scholarly journals Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

Cell Reports ◽  
2014 ◽  
Vol 8 (5) ◽  
pp. 1365-1379 ◽  
Author(s):  
Nicholas T. Ingolia ◽  
Gloria A. Brar ◽  
Noam Stern-Ginossar ◽  
Michael S. Harris ◽  
Gaëlle J.S. Talhouarne ◽  
...  
2021 ◽  
Author(s):  
Aaron Wacholder ◽  
Omer Acar ◽  
Anne-Ruxandra Carvunis

Ribosome profiling experiments demonstrate widespread translation of eukaryotic genomes outside of annotated protein-coding genes. However, it is unclear how much of this "noncanonical" translation contributes biologically relevant microproteins rather than insignificant translational noise. Here, we developed an integrative computational framework (iRibo) that leverages hundreds of ribosome profiling experiments to detect signatures of translation with high sensitivity and specificity. We deployed iRibo to construct a reference translatome in the model organism S. cerevisiae. We identified ~19,000 noncanonical translated elements outside of the ~5,400 canonical yeast protein-coding genes. Most (65%) of these non-canonical translated elements were located on transcripts annotated as non-coding, or entirely unannotated, while the remainder were located on the 5' and 3' ends of mRNA transcripts. Only 14 non-canonical translated elements were evolutionarily conserved. In stark contrast with canonical protein-coding genes, the great majority of the yeast noncanonical translatome appeared evolutionarily transient and showed no signatures of selection. Yet, we uncovered phenotypes for 53% of a representative subset of evolutionarily transient translated elements. The iRibo framework and reference translatome described here provide a foundation for further investigation of a largely unexplored, but biologically significant, evolutionarily transient translatome.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Chen Xie ◽  
Cemalettin Bekpen ◽  
Sven Künzel ◽  
Maryam Keshavarz ◽  
Rebecca Krebs-Wheaton ◽  
...  

The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation.


2019 ◽  
Vol 07 (02) ◽  
Author(s):  
Saira Bibi ◽  
Muhammad Fiaz Khan ◽  
Aqsa Rehman ◽  
Faisal Nouroz

Sign in / Sign up

Export Citation Format

Share Document