new genes
Recently Published Documents


TOTAL DOCUMENTS

1566
(FIVE YEARS 464)

H-INDEX

92
(FIVE YEARS 12)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Marzieh Khani ◽  
Elizabeth Gibbons ◽  
Jose Bras ◽  
Rita Guerreiro

AbstractThe search for rare variants in Alzheimer’s disease (AD) is usually deemed a high-risk - high-reward situation. The challenges associated with this endeavor are real. Still, the application of genome-wide technologies to large numbers of cases and controls or to small, well-characterized families has started to be fruitful.Rare variants associated with AD have been shown to increase risk or cause disease, but also to protect against the development of AD. All of these can potentially be targeted for the development of new drugs.Multiple independent studies have now shown associations of rare variants in NOTCH3, TREM2, SORL1, ABCA7, BIN1, CLU, NCK2, AKAP9, UNC5C, PLCG2, and ABI3 with AD and suggested that they may influence disease via multiple mechanisms. These genes have reported functions in the immune system, lipid metabolism, synaptic plasticity, and apoptosis. However, the main pathway emerging from the collective of genes harboring rare variants associated with AD is the Aβ pathway. Associations of rare variants in dozens of other genes have also been proposed, but have not yet been replicated in independent studies. Replication of this type of findings is one of the challenges associated with studying rare variants in complex diseases, such as AD. In this review, we discuss some of these primary challenges as well as possible solutions.Integrative approaches, the availability of large datasets and databases, and the development of new analytical methodologies will continue to produce new genes harboring rare variability impacting AD. In the future, more extensive and more diverse genetic studies, as well as studies of deeply characterized families, will enhance our understanding of disease pathogenesis and put us on the correct path for the development of successful drugs.


2022 ◽  
Vol 12 ◽  
Author(s):  
Liya Huang ◽  
Ting Ye ◽  
Jingjing Wang ◽  
Xiaojing Gu ◽  
Ruiting Ma ◽  
...  

Pancreatic adenocarcinoma is one of the leading causes of cancer-related death worldwide. Since little clinical symptoms were shown in the early period of pancreatic adenocarcinoma, most patients were found to carry metastases when diagnosis. The lack of effective diagnosis biomarkers and therapeutic targets makes pancreatic adenocarcinoma difficult to screen and cure. The fundamental problem is we know very little about the regulatory mechanisms during carcinogenesis. Here, we employed weighted gene co-expression network analysis (WGCNA) to build gene interaction network using expression profile of pancreatic adenocarcinoma from The Cancer Genome Atlas (TCGA). STRING was used for the construction and visualization of biological networks. A total of 22 modules were detected in the network, among which yellow and pink modules showed the most significant associations with pancreatic adenocarcinoma. Dozens of new genes including PKMYT1, WDHD1, ASF1B, and RAD18 were identified. Further survival analysis yielded their valuable effects on the diagnosis and treatment of pancreatic adenocarcinoma. Our study pioneered network-based algorithm in the application of tumor etiology and discovered several promising regulators for pancreatic adenocarcinoma detection and therapy.


2022 ◽  
Vol 25 (8) ◽  
pp. 874-881
Author(s):  
N. S. Zhemchuzhina ◽  
M. I. Kiseleva ◽  
T. M. Kolomiets ◽  
I. B. Ablova ◽  
A. P. Glinushkin ◽  
...  

In order to prevent crop yield losses from the most dangerous and economically important pathogenic organisms, it is necessary not only to monitor the virulence gene pool, but also to study the nature of pathogen variability and determine the potential for the emergence of new genes and races. This requires centralized collections of fungal cultures characterized by a set of stable strains to provide for phytopathological, immunological, breeding, genetic, toxicological, parasitological and other studies. The State Collection of Phytopathogenic Microorganisms of the ARSRIP is the State Depository of Phytopathogenic microorganisms that are non-pathogenic to humans or farmed animals. Currently, it has more than 4,500 accessions of plant pathogenic strains of fungi, oomycetes, bacteria, viruses, phytoplasmas, and the collection is updated annually. For this purpose, the study of the inter- and intraspecific genetic diversity of genus Fusarium was carried out in agricultural systems of the Krasnodar Territory. In 2020, the State Collection of Phytopathogenic Microorganisms was supplemented with 13 strains of Fusarium fungi isolated from tissues of winter wheat plants collected in several locations of the Krasnodar region. The complex of Fusarium fungi revealed on winter wheat usually included Fusarium oxysporum, F. culmorum, F. lolii, F. graminearum, F. fujikuroi, F. sporotrichioides, etc. The effect of the preceding crop on the frequency of Fusarium species isolated from winter wheat was observed. After series cloning of collected isolates, 21 strains of different fungal species characterized by stable morphology traits and known pathogenic and phytotoxic properties were selected for collection replenishment. Significant differences in pathogenic activity were revealed between fungi belonging to either the same or different species; the manifestation of this activity varied from the absence of any effect of spore suspensions on seedling development to a complete inhibition of their growth. The phytotoxic activity towards wheat seedlings varied from medium to high. Species possessing a high intensity of phytotoxic activities are the most dangerous for wheat, since they promote accumulation of dangerous phytotoxins in plant tissues.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Min Ye ◽  
Bidhan Nayak ◽  
Lei Xiong ◽  
Chao Xie ◽  
Yi Dong ◽  
...  

In many organisms, cytochrome P450 enzymes are the primary detoxifying enzymes. Enhanced P450 activity can be mediated by the emergence of new genes, increased transcription due to mutations in the promoter regions, changes in enzyme structures and functions due to mutations in protein-coding regions, or changes in post-translational modifications; all of these changes are subject to insecticide selection pressure. Multiple signalling pathways and key effector molecules are involved in the regulation of insect P450s. Increased P450 activity is a key mechanism inducing insect resistance. Hence, downregulation of selected P450s is a promising strategy to overcome this resistance. Insect P450 inhibitors that act as insecticide synergists, RNA interference to induce P450 gene silencing, and the use of transgenic insects and crops are examples of strategies utilized to overcome resistance. This article reviews the latest advances in studies related to insect P450s-mediated agrochemical resistance, with focuses on the regulatory mechanisms and associated pest management strategies. Future investigations on the comprehensive regulatory pathways of P450-mediated detoxification, identification of key effectors, and downregulation strategies for P450s will ecologically, economically, and practically improve pest management.


2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Erin M. Andres ◽  
Kathleen Kelsey Earnest ◽  
Cuncong Zhong ◽  
Mabel L. Rice ◽  
Muhammad Hashim Raza

Specific language impairment (SLI) is a common neurodevelopmental disorder (NDD) that displays high heritability estimates. Genetic studies have identified several loci, but the molecular basis of SLI remains unclear. With the aim to better understand the genetic architecture of SLI, we performed whole-exome sequencing (WES) in a single family (ID: 489; n = 11). We identified co-segregating rare variants in three new genes: BUD13, APLP2, and NDRG2. To determine the significance of these genes in SLI, we Sanger sequenced all coding regions of each gene in unrelated individuals with SLI (n = 175). We observed 13 additional rare variants in 18 unrelated individuals. Variants in BUD13 reached genome-wide significance (p-value < 0.01) upon comparison with similar variants in the 1000 Genomes Project, providing gene level evidence that BUD13 is involved in SLI. Additionally, five BUD13 variants showed cohesive variant level evidence of likely pathogenicity. Bud13 is a component of the retention and splicing (RES) complex. Additional supportive evidence from studies of an animal model (loss-of-function mutations in BUD13 caused a profound neural phenotype) and individuals with an NDD phenotype (carrying a CNV spanning BUD13), indicates BUD13 could be a target for investigation of the neural basis of language.


Author(s):  
L. Golovan ◽  
Yu. Chuprina ◽  
O. Bliznjuk ◽  
N. Masalitina ◽  
A. Belinska ◽  
...  

The world's genetic resources of plants are the main source of improving crops for decades to come. The gene pool of plants has a hidden resource of new genes, or their combinations, including - selection-important features. The study of the potential of the plant gene pool with the main biological and economic characteristics allows to expand the genetic base of crops for the successful implementation of breeding programs in various areas. The genus Vigna has about 200 species that are grown in warm regions of the planet. The centers of origin of the species are in Africa, but mung beans, urd, azuki and rice beans are of Asian origin. The collection includes 20 specimens belonging to 7 species of the genus Vigna: V. aconitifolia (Jacq.) Marechal (willow aconitolista, mott) – 3 specimens, V. angularis (Willd.) Ohwi et Ohashi (adzuki) – 4, V. radiata (L.) R. Wilczek (mash) – 4, V. umbellata (Thunb.) Ohwi et Ohashi (vigna rice) – 4, V. unguiculata (L.) Walp. (Chinese) – 5. These are mainly local varieties, about 10 % are breeding varieties and 1% are forms that grow in nature. The multifaceted use of cultivated species of the genus Vigna contributed to their spread throughout the tropical, subtropical and temperate zones of the globe. They are economically important crops in many developing countries. Geographical analysis showed that most of the samples came from the areas of world agriculture and crop formation. most samples of V. radiata, V. mungo, V. aconitifolia, V. trilobata, V. umbellata were obtained from India and Pakistan, V. angularis – from East Asia and China, V. unguiculata – East Africa (Ethiopia, Kenya), V unguiculata – from China. However, the exact place of domestication of this culture has not been established, and in numerous sources of literature can be found different opinions of scientists on the origin of cowpea and the centers of its diversity. Recently, using the methods of molecular genetics (RAPD, AFLP and others) it was confirmed that the northern part of Africa is the center of origin of the cultured, because the wild types of West Africa are closer to cultural forms than the wild types of East and South Africa. It should be noted that the species of cowpea have a significant intraspecific polymorphism. The samples showed strong variability of morphological and economically valuable features. Such a wide range of variable variability is due to the places of cultivation of samples, different environmental conditions (plains, mountains, climate). According to the results of the evaluation of the DNA polymorphism of cowpea using molecular genetic markers, it was found that the species of cowpea involved in the study are characterized by a high level of DNA polymorphism, which averaged 78.6 %. 145 loci were identified, including 31 unique, specific to a particular sample, and 31 monomorphic, characteristic of all samples. Monomorphic loci are conserved regions of DNA that indicate the common origin of the species of cowpea involved in the work, and can be used as genus and species-specific markers. Unique loci indicate genetic divergence of the studied material and can serve as markers of certain samples. The average level of intrapopulation polymorphism of cowpea DNA (37.2–93.8 %, depending on the genotype) was established, which indicates the existence of significant variability in the studied samples of cowpea. It shows a high level of genetic divergence of cowpea species and testifies in favor of the polyphyletic theory of their origin.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Benjamin H. Krinsky ◽  
Robert K. Arthur ◽  
Shengqian Xia ◽  
Dylan Sosa ◽  
Deanna Arsala ◽  
...  

Young, or newly evolved, genes arise ubiquitously across the tree of life, and they can rapidly acquire novel functions that influence a diverse array of biological processes. Previous work identified a young regulatory duplicate gene in Drosophila, Zeus that unexpectedly diverged rapidly from its parent, Caf40, an extremely conserved component in the CCR4–NOT machinery in post-transcriptional and post-translational regulation of eukaryotic cells, and took on roles in the male reproductive system. This neofunctionalization was accompanied by differential binding of the Zeus protein to loci throughout the Drosophila melanogaster genome. However, the way in which new DNA-binding proteins acquire and coevolve with their targets in the genome is not understood. Here, by comparing Zeus ChIP-Seq data from D. melanogaster and D. simulans to the ancestral Caf40 binding events from D. yakuba, a species that diverged before the duplication event, we found a dynamic pattern in which Zeus binding rapidly coevolved with a previously unknown DNA motif, which we term Caf40 and Zeus-Associated Motif (CAZAM), under the influence of positive selection. Interestingly, while both copies of Zeus acquired targets at male-biased and testis-specific genes, D. melanogaster and D. simulans proteins have specialized binding on different chromosomes, a pattern echoed in the evolution of the associated motif. Using CRISPR-Cas9-mediated gene knockout of Zeus and RNA-Seq, we found that Zeus regulated the expression of 661 differentially expressed genes (DEGs). Our results suggest that the evolution of young regulatory genes can be coupled to substantial rewiring of the transcriptional networks into which they integrate, even over short evolutionary timescales. Our results thus uncover dynamic genome-wide evolutionary processes associated with new genes.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Ashley G. Yow ◽  
Hamed Bostan ◽  
Raúl Castanera ◽  
Valentino Ruggieri ◽  
Molla F. Mengist ◽  
...  

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and ‘MD2’ is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Lei Xu ◽  
Wenyi Zhang ◽  
Hui Qiao ◽  
Sufei Jiang ◽  
Yiwei Xiong ◽  
...  

As the basic element of aerobic animal life, oxygen participates in most physiological activities of animals. Hypoxia stress is often the subject of aquatic animal research. Macrobrachium nipponense, an economically important aquatic animal in southern China, has been affected by hypoxia for many years and this has resulted in a large amount of economic loss due to its sensitivity to hypoxia; Metabolism and transcriptome data were combined in the analysis of the hepatopancreas of M. nipponense in different physiological states under hypoxia; A total of 108, 86, and 48 differentially expressed metabolites (DEMs) were found in three different comparisons (survived, moribund, and dead shrimps), respectively. Thirty-two common DEMs were found by comparing the different physiological states of M. nipponense with the control group in response to hypoxia. Twelve hypoxia-related genes were identified by screening and analyzing common DEMs. GTP phosphoenolpyruvate carboxykinase (PEPCK) was the only differentially expressed gene that ranked highly in transcriptome analysis combined with metabolome analysis. PEPCK ranked highly both in transcriptome analysis and in combination with metabolism analysis; therefore, it was considered to have an important role in hypoxic response. This manuscript fills the one-sidedness of the gap in hypoxia transcriptome analysis and reversely deduces several new genes related to hypoxia from metabolites. This study contributes to the clarification of the molecular process associated with M. nipponense under hypoxic stress.


2021 ◽  
Author(s):  
Vivek Kumar Raxwal ◽  
Somya Singh ◽  
Manu Agarwal ◽  
Karel Riha

New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. Together, these data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.


Sign in / Sign up

Export Citation Format

Share Document