Assessment of Genetic Drift in Large Pharmacogenomic Studies

Cell Systems ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 393-401.e2
Author(s):  
Rene Quevedo ◽  
Petr Smirnov ◽  
Denis Tkachuk ◽  
Chantal Ho ◽  
Nehme El-Hachem ◽  
...  
Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2249-2258 ◽  
Author(s):  
Mark M Iles ◽  
Kevin Walters ◽  
Chris Cannings

AbstractIt is well known that an allele causing increased recombination is expected to proliferate as a result of genetic drift in a finite population undergoing selection, without requiring other mechanisms. This is supported by recent simulations apparently demonstrating that, in small populations, drift is more important than epistasis in increasing recombination, with this effect disappearing in larger finite populations. However, recent experimental evidence finds a greater advantage for recombination in larger populations. These results are reconciled by demonstrating through simulation without epistasis that for m loci recombination has an appreciable selective advantage over a range of population sizes (am, bm). bm increases steadily with m while am remains fairly static. Thus, however large the finite population, if selection acts on sufficiently many loci, an allele that increases recombination is selected for. We show that as selection acts on our finite population, recombination increases the variance in expected log fitness, causing indirect selection on a recombination-modifying locus. This effect is enhanced in those populations with more loci because the variance in phenotypic fitnesses in relation to the possible range will be smaller. Thus fixation of a particular haplotype is less likely to occur, increasing the advantage of recombination.


2021 ◽  
Author(s):  
Lorenzo Talarico ◽  
Silvio Marta ◽  
Anna Rita Rossi ◽  
Simone Crescenzo ◽  
Gerardo Petrosino ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Laith N. AL-Eitan ◽  
Doaa M. Rababa’h ◽  
Nancy M. Hakooz ◽  
Mansour A. Alghamdi ◽  
Rana B. Dajani

Several genetic variants have been identified that cause variation among different populations and even within individuals of a similar descent. This leads to interindividual variations in the optimal dose of the drug that is required to sustain the treatment efficiency. In this study, 56 single nucleotide polymorphisms (SNPs) within several pharmacogenes were analyzed in 128 unrelated subjects from a genetically isolated group of Circassian people living in Jordan. We also compared these variant distributions to other ethnic groups that are available at two databases (Genome 1000 and eXAC). Our results revealed that the distribution of allele frequencies within genes among Circassians in Jordan showed similarities and disparities when compared to other populations. This study provides a powerful base for clinically relevant SNPs to enhance medical research and future pharmacogenomic studies. Rare variants detected in isolated populations can significantly guide to novel loci involved in the development of clinically relevant traits.


Sign in / Sign up

Export Citation Format

Share Document