genome reduction
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 46)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Hao Zhang ◽  
Ying Sun ◽  
Qinglu Zeng ◽  
Sean A. Crowe ◽  
Haiwei Luo

Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus , shaping their ecologically vital role as the most abundant primary producers in the modern oceans.


Author(s):  
Michele Castelli ◽  
Olivia Lanzoni ◽  
Michele Giovannini ◽  
Natalia Lebedeva ◽  
Leandro Gammuto ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jimena Solana ◽  
Emilio Garrote-Sánchez ◽  
Rosario Gil

Abstract Background The study of gene essentiality is fundamental to understand the basic principles of life, as well as for applications in many fields. In recent decades, dozens of sets of essential genes have been determined using different experimental and bioinformatics approaches, and this information has been useful for genome reduction of model organisms. Multiple in silico strategies have been developed to predict gene essentiality, but no optimal algorithm or set of gene features has been found yet, especially for non-model organisms with incomplete functional annotation. Results We have developed DELEAT v0.1 (DELetion design by Essentiality Analysis Tool), an easy-to-use bioinformatic tool which integrates an in silico gene essentiality classifier in a pipeline allowing automatic design of large-scale deletions in any bacterial genome. The essentiality classifier consists of a novel logistic regression model based on only six gene features which are not dependent on experimental data or functional annotation. As a proof of concept, we have applied this pipeline to the determination of dispensable regions in the genome of Bartonella quintana str. Toulouse. In this already reduced genome, 35 possible deletions have been delimited, spanning 29% of the genome. Conclusions Built on in silico gene essentiality predictions, we have developed an analysis pipeline which assists researchers throughout multiple stages of bacterial genome reduction projects, and created a novel classifier which is simple, fast, and universally applicable to any bacterial organism with a GenBank annotation file.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0239350
Author(s):  
Cynthia Paola Rangel-Chávez ◽  
Edgardo Galán-Vásquez ◽  
Azucena Pescador-Tapia ◽  
Luis Delaye ◽  
Agustino Martínez-Antonio

Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β’, and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β’ subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia’s that suggests the inability to bind the -35-box promoter element.


Author(s):  
Amanda Y. van Tilburg ◽  
Julius A. Fülleborn ◽  
Alexander Reder ◽  
Uwe Völker ◽  
Jörg Stülke ◽  
...  

Cell chaining in Bacillus subtilis is naturally observed in a subset of cells during exponential growth and during biofilm formation. However, the recently constructed large-scale genome-minimized B. subtilis strain PG10 displays a severe and permanent defect in cell separation, as it exclusively grows in the form of long filaments of non-separated cells. In this study, we investigated the underlying mechanisms responsible for the incomplete cell division of PG10 by genomic and transcriptomic analyses. Repression of the SigD-regulon, including the major autolysin lytF , was identified as the cause for the cell separation problem of PG10. It appeared that SigD-regulated genes are downregulated in PG10 due to the absence of the flagellar export apparatus, which normally is responsible for secretion of FlgM, the anti-sigma factor of SigD. Although mild negative effects on growth and cell morphology were observed, deletion of flgM could revert the aberrant cell chaining phenotype and increased the transformation efficiency. Interestingly, our work also demonstrates the occurrence of increased antisense transcription of slrR , a transcriptional repressor of autolysin genes, in PG10, and provides further understanding for this observation. In addition to revealing the molecular basis of the cell separation defect in PG10, our work provides novel targets for subsequent genome reduction efforts and future directions for further optimization of mini Bacillus PG10. IMPORTANCE Reduction of the size of bacterial genomes is relevant for understanding the minimal requirements for cellular life as well as from a biotechnological point of view. Although the genome-minimized Bacillus subtilis strain PG10 displays several beneficial traits as a microbial cell factory compared to its parental strain, a defect at the final stage of cell division was introduced during the genome reduction process. By genetic and transcriptomic analyses, we identified the underlying reasons for the cell separation problem of PG10. In addition to enabling PG10 to grow in a similar way as B. subtilis wild type strains, our work points towards subsequent targets for fine-tuning and further reduction of the genome of PG10. Moreover, solving the cell separation defect facilitates laboratory handling of PG10 by increasing the transformation efficiency amongst others. Overall, our work contributes to understanding and improving biotechnologically attractive minimal bacterial cell factories.


2021 ◽  
Author(s):  
Xiaoyuan Feng ◽  
Xiao Chu ◽  
Yang Qian ◽  
Michael W. Henson ◽  
V. Celeste Lanclos ◽  
...  
Keyword(s):  

iScience ◽  
2021 ◽  
pp. 102680
Author(s):  
Benjamin H. Conlon ◽  
Cene Gostinčar ◽  
Janis Fricke ◽  
Nina B. Kreuzenbeck ◽  
Jan-Martin Daniel ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Otero-Bravo ◽  
Zakee L. Sabree

AbstractNutritional symbioses between bacteria and insects are prevalent and diverse, allowing insects to expand their feeding strategies and niches. A common consequence of long-term associations is a considerable reduction in symbiont genome size likely influenced by the radical shift in selective pressures as a result of the less variable environment within the host. While several of these cases can be found across distinct insect species, most examples provide a limited view of a single or few stages of the process of genome reduction. Stink bugs (Pentatomidae) contain inherited gamma-proteobacterial symbionts in a modified organ in their midgut and are an example of a long-term nutritional symbiosis, but multiple cases of new symbiont acquisition throughout the history of the family have been described. We sequenced the genomes of 11 symbionts of stink bugs with sizes that ranged from equal to those of their free-living relatives to less than 20%. Comparative genomics of these and previously sequenced symbionts revealed initial stages of genome reduction including an initial pseudogenization before genome reduction, followed by multiple stages of progressive degeneration of existing metabolic pathways likely to impact host interactions such as cell wall component biosynthesis. Amino acid biosynthesis pathways were retained in a similar manner as in other nutritional symbionts. Stink bug symbionts display convergent genome reduction events showing progressive changes from a free-living bacterium to a host-dependent symbiont. This system can therefore be used to study convergent genome evolution of symbiosis at a scale not previously available.


Sign in / Sign up

Export Citation Format

Share Document