Influence of curing temperatures on the hydration of calcium aluminate cement/Portland cement/calcium sulfate blends

2017 ◽  
Vol 80 ◽  
pp. 298-306 ◽  
Author(s):  
Linglin Xu ◽  
Kai Wu ◽  
Christiane Rößler ◽  
Peiming Wang ◽  
H.M. Ludwig
2016 ◽  
Vol 1812 ◽  
pp. 71-76 ◽  
Author(s):  
Andreea M. Moncea ◽  
Ana M. Panait ◽  
György Deák ◽  
George Poteraș

ABSTRACTLately, the investigations of binders from ternary system Portland cement (PC), calcium aluminate cement (CAC) and calcium sulfate ($C\overline S$), have gone through a larger stage of development due to their special properties such as fast setting and rapid hardening, early strength, non-efflorescence, etc. These special properties are ensured by the binder’s microstructure, developed through hydration processes and reactions between hydrate components, which allows us to use them in special environments (aggressive environments with very low or very high level of pH, environments with high temperature, etc.). The binders from this system were simply named “dry mortars”, and provide the final user with an easy processing. In order to explain the mechanical behavior of the specimens exposed in normal curing conditions (T = 20 ± 2 °C and R.H. ≈ 95%), and with different percentages of calcium sulfate (added as hemihydrate or anhydrite), research on the microstructure of the hardened system was performed using SEM and XRD investigation techniques. The analyses have been performed on the binder pastes, hydrated for 1 and 28 days. The tests results showed that the specimen with anhydrous $C\overline S$ content had the best mechanical behavior.


2019 ◽  
Vol 138 (6) ◽  
pp. 4561-4569 ◽  
Author(s):  
Wiesława Nocuń-Wczelik ◽  
Katarzyna Stolarska

Abstract The studies focused on the kinetics of early hydration in the high-calcium aluminate cement (CAC 70)—by-pass cement kiln dusts (BPCKD)—mixtures. For this purpose, the mixtures of cement with this additive or with some potential constituents of dusts were produced. The microcalorimeter was applied to follow the kinetics of hydration. The investigations with the aim of finding the relationship between the components of initial mixtures and the modification of hydration process were carried out. The rheological properties were characterized, and the chemical shrinkage characteristics were produced. The phase assemblage characterization and microscopic observations were done as well. In case of the high-calcium aluminate-based binders, the modification of setting process was observed; the rheological properties and chemical shrinkage were affected too. The acceleration of heat evolution—the shortening of so-called induction period in the presence of BPCKD additive—was observed. The results were compared to those obtained for the CAC with ordinary Portland cement additive. The results of calorimetric measurements are discussed in terms of the chemical and phase assemblage of this additive as compared to the Portland cement clinker precursors and potassium chloride—the solid and liquid components of the dust.


Sign in / Sign up

Export Citation Format

Share Document