chemical shrinkage
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 28)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jamal Khatib ◽  
Rawan Ramadan ◽  
Hassan Ghanem ◽  
Adel ElKordi

Abstract The main aim of this study is to examine the effect of incorporating limestone fines (LF) on chemical shrinkage of pastes and mortars. For this purpose, five paste and five mortar mixes were prepared with 0, 5, 10, 15 and 20% (by weight) LF as replacement of cement. The water to binder ratio (w/b) was 0.45 for all mixes. The sand to binder (s/b) ratio in the mortar mixes was 2. Testing included chemical shrinkage, compressive strength, density and ultrasonic-pulse velocity (UPV). Chemical shrinkage was tested each hour for the first 24 hrs, and thereafter each 2 days until a total period of 90 days. Furthermore, compressive strength and UPV tests were conducted at 1 day, 7, 28 and 90 days of curing. The results show that the long-term chemical shrinkage of pastes was found to increase with the increase in LF content up to 15%. Beyond this level of replacement, the chemical shrinkage started to decrease. However, the chemical shrinkage for mortars increased with the increase in LF content up to 10% LF and a decrease was observed beyond this level. It was also noticed that compressive strength for pastes and mortars attained the highest value for mixes containing 10 and 15% LF. The trend in the UPV results is somewhat similar to those of strength. Density for pastes and mortars increased up to 15% LF followed by a decrease at 20 % replacement level. Correlations between the various properties were conducted. It was found that an increase in chemical shrinkage led to an increase in compressive strength.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 366
Author(s):  
Jamal Khatib ◽  
Rawan Ramadan ◽  
Hassan Ghanem ◽  
Adel Elkordi

The common cause of cracking in cement paste is shrinkage due to different reasons, such as loss of water and chemical reactions. Incorporating limestone fines (LF) as a cement replacement can affect the shrinkage of the paste. To examine this effect, five paste mixes were prepared with 0, 5, 10, 15 and 20% LF as a cement replacement and with a water-to-binder ratio (w/b) of 0.45. Four volume stability tests were conducted for each paste: chemical, autogenous and drying shrinkage and expansion. Chemical shrinkage was tested each hour for the first 24 h and thereafter every 2 days for a total period of 90 days. The drying shrinkage, autogenous shrinkage and expansion were monitored every 2 days until 90 days. The results showed that replacing 15% LF enhanced the chemical shrinkage of the paste. However, autogenous shrinkage of the paste was found to increase between 0 and 10% LF and decline sharply at 15 and 20% LF. Drying shrinkage was found to increase with the increase in LF content. Expansion exhibited little variation between 0 and 10% LF and an increase for replacement above 15% LF. These results are discussed in terms of the formation of hydration products and self-desiccation due to hydration.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2748
Author(s):  
Alexander Vedernikov ◽  
Alexander Safonov ◽  
Fausto Tucci ◽  
Pierpaolo Carlone ◽  
Iskander Akhatov

Cure-induced deformations are inevitable in pultruded composite profiles due to the peculiarities of the pultrusion process and usually require the use of costly shimming operations at the assembly stage for their compensation. Residual stresses formed at the production and assembly stages impair the mechanical performance of pultruded elements. A numerical technique that would allow the prediction and reduction of cure-induced deformations is essential for the optimization of the pultrusion process. This study is aimed at the development of a numerical model that is able to predict spring-in in pultruded L-shaped profiles. The model was developed in the ABAQUS software suite with user subroutines UMAT, FILM, USDFLD, HETVAL, and UEXPAN. The authors used the 2D approach to describe the thermochemical and mechanical behavior via the modified Cure Hardening Instantaneous Linear Elastic (CHILE) model. The developed model was validated in two experiments conducted with a 6-month interval using glass fiber/vinyl ester resin L-shaped profiles manufactured at pulling speeds of 200, 400, and 600 mm/min. Spring-in predictions obtained with the proposed numerical model fall within the experimental data range. The validated model has allowed authors to establish that the increase in spring-in values observed at higher pulling speeds can be attributed to a higher fraction of uncured material in the composite exiting the die block and the subsequent increase in chemical shrinkage that occurs under unconstrained conditions. This study is the first one to isolate and evaluate the contributions of thermal and chemical shrinkage into spring-in evolution in pultruded profiles. Based on this model, the authors demonstrate the possibility of achieving the same level of spring-in at increased pulling speeds from 200 to 900 mm/min, either by using a post-die cooling tool or by reducing the chemical shrinkage of the resin. The study provides insight into the factors significantly affecting the spring-in, and it analyzes the methods of spring-in reduction that can be used by scholars to minimize the spring-in in the pultrusion process.


2021 ◽  
Vol 1036 ◽  
pp. 263-276
Author(s):  
Hao Ran Huang ◽  
Yi Shun Liao ◽  
Siraj Ai Qunaynah ◽  
Guo Xi Jiang ◽  
Da Wei Guo ◽  
...  

The effects of steel slag with 0, 10%, 20 % and 40% content on the chemical shrinkage, autogenous shrinkage, internal relative humidity, and drying shrinkage of calcium sulfoaluminate cement paste were studied. The results show that the compressive strength of calcium sulfoaluminate cement paste at an early stage decreases gradually when the content of steel slag increases. When the steel slag content is 0 and 10%, the compressive strength of hardened cement pastes gradually decreases at 90 and 180 days, but the samples with steel slag content of 20% and 40% maintain the compressive strength growth within 180 d. With the extension of curing period, the gap of compressive strength is gradually narrowed. The autogenous shrinkage decreases with the increase of steel slag content and has a good linear relationship with the relative humidity inside the paste. The proportion of autogenous shrinkage to chemical shrinkage is deficient, and most chemical shrinkage occurs in the form of the pore volume. Although the trends of drying shrinkage and autogenous are consistent, the former is more severe than the latter.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 243
Author(s):  
Chuanlin Wang ◽  
Zeping Liu ◽  
Tengteng Zhang ◽  
Yuxuan Zhang ◽  
Zehong Liu ◽  
...  

This research investigates the effect of seawater of different concentrations on the hydration process and microstructure of calcium sulphoaluminate (CSA) cement. It studies the CSA cement pastes via experiments carried out to determine the initial and final setting times, mechanical strength and chemical shrinkage with X-ray diffraction (XRD), scanning electron microscopy (SEM) and simultaneous differential thermal-thermogravimetric (DTA-TG) analysis. The DTA-TG and XRD results showed that the main hydration products were ettringite (AFt) and aluminum hydroxide in the CSA cement paste mixed with both freshwater and seawater, while a small amount of ettringite (AFt) became monosulfate (AFm) in the freshwater-mixed CSA cement. The SEM results demonstrate that seawater can improve the microstructure of CSA cement paste in the early stage of hydration (1 d) but impairs the microstructure of the CSA cement matrix in the later stage of hydration (7 d). The experimental results also indicate that a high concentration of seawater can extend the setting time, increase the chemical shrinkage and decrease the mechanical strength of CSA cement.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuanlin Wang ◽  
Meimei Song

The present work studies the influence of water-cement ratio and types of mixing water on the hydration process and microstructure of calcium sulphoaluminate (CSA) cement. Experimental tests on the setting time, physical properties, compressive strength, chemical shrinkage, X-ray diffraction (XRD), and scanning electron microscopy (SEM) of CSA cement paste were carried out. The XRD analysis confirmed that the main hydration product is ettringite in both freshwater and seawater mixed CSA cement with different w/c ratios. The SEM analysis and physical properties test show that both low w/c ratio and seawater can improve the microstructure of CSA cement. The test results also find out that the high w/c ratio can accelerate the hydration process, extend the setting time, lower the compressive strength, and increase the chemical shrinkage of CSA cement, and the seawater presents a similar influence except for the mechanical property. The seawater increases the compressive strength of CSA cement in the early stage of hydration but will increase the microcracks at the later hydration stage of CSA cement and reduce its mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1164
Author(s):  
Judy Kheir ◽  
Benoît Hilloulin ◽  
Ahmed Loukili ◽  
Nele De Belie

Chemical shrinkage (CS) is the reason behind early age cracking, a common problem for concrete with low water to cement ratios (w/c < 0.35) known as Ultra-High- and High-Performance Concrete (U-HPC). However, to avoid the crack development initiated by autogenous shrinkage, a precise measurement of CS is required, as the values obtained can determine the correct amount of internal curing agent to be added in the mixture to avoid crack formation. ASTM C1608 is the standardized method for performing CS tests. In this study, recommendations are provided to improve the reliability of results obtained with this standard method, such as good compaction of samples and the use of superplasticizer (SP) for low w/c ratios (≤0.2). Cement pastes with CEM I and CEM III have been tested at different w/c ratios equal to 0.2, 0.3 and 0.4 with and without the addition of superplasticizer. CS results following ASTM-C1608 dilatometry showed that the presence of mineral additions such as silica fume and filler reduced the chemical shrinkage, while CS increased with increasing w/c. Low w/c ratio pastes of CEM III had slightly higher CS rates than CEM I, while the opposite was noticed at higher w/c. SEM images illustrated the importance of a careful compaction and SP use.


Sign in / Sign up

Export Citation Format

Share Document