early hydration
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 150)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Vol 321 ◽  
pp. 126412
Author(s):  
Mathilde Poirier ◽  
Simon Blotevogel ◽  
Catherine Noiriel ◽  
Anne Bonnin ◽  
Judit Kaknics ◽  
...  

2022 ◽  
Vol 319 ◽  
pp. 126227
Author(s):  
Jiankun Xu ◽  
Hao Yang ◽  
Zhengxian Yang ◽  
Mengya Huang ◽  
Yong Zhang ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 459
Author(s):  
Chiara D’Erme ◽  
Walter Remo Caseri ◽  
Maria Laura Santarelli

The use of nanocellulose in traditional lime-based mortars is a promising solution for green buildings in the frame of limiting the CO2 emissions resulting from Portland Cement production. The influence of the fibrillated cellulose (FC) on lime pastes and lime-based mortars was studied incorporating FC at dosages of 0%, 0.1%, 0.2% and 0.3wt% by weight of binder. The lime pastes were subjected to thermal and nitrogen gas sorption analyses to understand if FC affects the formation of hydraulic compounds and the mesoporosities volume and distribution. The setting and early hydration of the mortars were studied with isothermal calorimetry. The mechanical performances were investigated with compressive and three-point-bending tests. Furthermore, fragments resulting from the mechanical tests were microscopically studied to understand the reinforcement mechanism of the fibres. It was found that 0.3wt% of FC enhances the flexural and compressive strengths respectively by 57% and 44% while the crack propagation after the material failure is not affected.


Author(s):  
Natalia Pires Martins ◽  
Burhan Cicek ◽  
Coralie Brumaud ◽  
Guillaume Habert

The fast precipitation of ettringite in conventional Calcium Sulfo Aluminate (CSA) cement causes rapid stiffening of the cement paste and is directly associated with short setting times and self-desiccation. To extend the time during which those types of cement remain workable, retarding admixtures can be used. However, retarders may affect the amounts and types of hydration products formed and as a consequence the ability of hydrated cement to chemically bind water. This work investigates the influence of two natural-based admixtures on the self-desiccation ability of a vernacular CSA ternary binder used as earth stabilization. Vicat measurements were used to study the efficiency of citric acid and sucrose as retarding admixtures on the setting time of stabilized earth. A quantitative study of the self-desiccation ability of the binder was performed on dried binder pastes using thermogravimetric analysis (TGA). Results show that both admixtures have a significant impact on the setting time of the binder. Furthermore, TGA showed that the self-desiccation ability of this vernacular CSA binder is significantly reduced when citric acid at high dosages is used, both at early hydration and after 14 days. On the contrary, the use of sucrose does not affect the water chemically bound at an early age but can maximize bound water after 14 days of hydration.


2021 ◽  
pp. 1-32
Author(s):  
Nancy Beuntner ◽  
Karl-Christian Thienel

The fundamental knowledge about the reaction mechanism of calcined clays in cement and the mutual interaction is important for their assessment as supplementary cementitious material and the resulting concrete properties. In this study, the hydration of two cements differing in alkali content and with the addition of a highly reactive, aluminum-rich metakaolin and one calcined common clay with low kaolinite content was investigated during the first 48 hours. For this purpose, four established methods that describe the early hydration were used: isothermal calorimetry, thermogravimetry, in-situ X-ray diffraction and chemical analysis of pore solution. This so far unique combination of methods enabled the understanding of the complex binder (cement-calcined clay) hydration behavior. The results showed considerable differences depending on type of calcined clay, its chemical-mineralogical composition, fineness and especially towards its reaction mechanism with aluminate clinker phases controlled by the composition of pore solution. The impact of calcined clay on the early clinker hydration exceeds significantly physical effects only.


2021 ◽  
Vol 150 ◽  
pp. 106584
Author(s):  
Isabel Galan ◽  
Bernhard Müller ◽  
Lukas G. Briendl ◽  
Florian Mittermayr ◽  
Torsten Mayr ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7098
Author(s):  
Wang Yao ◽  
Baolin Guo ◽  
Zhenyu Yang ◽  
Xingxing Yang ◽  
Yongzhi Guo ◽  
...  

The performance of cover concrete is acknowledged as a major factor governing the degradation of concrete structures. Curing plays a vital role in the development of concrete durability. The effects of different water-binder ratios and mineral admixtures on the curing water demand of concrete were studied by the surface water absorption test. Combined with the characteristics of the hydration heat and chemically bound water of the composition cementing material system, the law of variation for curing water demand was analyzed. The results show that the addition of mineral admixtures can reduce the early hydration rate and hydration exothermic characteristics, and the hydration degree decreases with the increase of mineral admixtures. Due to the filling effect and active effect, the addition of fly ash (FA) and ground granulated blast slag (GGBS) reduces the curing water demand. The curing water demand of cover concrete decreases with the increase of mineral admixture content, and the curing water demand of pure water is the maximum and that of mix FA and GGBS is the minimum. Moreover, there is a strong correlation between the cumulative curing water demand and the chemically bound water content, indicating that the power of water migration mainly comes from the hydration activity of the cementing material system. The results provide a theoretical basis for the fine control of a concrete curing system.


Sign in / Sign up

Export Citation Format

Share Document