scholarly journals Joint inversion of electromagnetic measurements for the determination of water saturation profiles in concrete structures

2021 ◽  
Vol 147 ◽  
pp. 106500
Author(s):  
Marie Antoinette Alhajj ◽  
Sébastien Bourguignon ◽  
Sérgio Palma-Lopes ◽  
Géraldine Villain
2005 ◽  
Vol 8 (01) ◽  
pp. 77-87
Author(s):  
M.T. Galli ◽  
M. Gonfalini ◽  
M. Mele ◽  
P. Belik ◽  
O. Faivre ◽  
...  

Summary Resistivity logs, while used extensively in the oil industry for the determination of water-saturation profiles and, consequently, for the quantification of hydrocarbon originally in place (HOIP), are strongly affected by environmental effects such as borehole, shoulder-bed resistivity contrasts, mud-filtrate invasion, dipping beds, and electrical anisotropy. It is well known by log interpreters that the combination of the different effects may strongly affect the estimation of hydrocarbon in place and hydrocarbon reserves. This paper highlights the strong reduction of the uncertainties in water-saturation determination and, consequently, the petrophysical characterization of the reservoir achieved by applying the appropriate 2Dresistivity-modeling and -inversion techniques to two wells of the Norwegian offshore area. Both wells were drilled in a sandstone reservoir, with some thin-bedded intervals, and affected by the presence of anomalous invasion profiles. Introduction Resistivity logs, as directly used for the determination of water-saturation profiles, have always been of focal interest for the oil industry; it is clear that the quality of these measurements, currently used in the net-pay and hydrocarbon-in-place determinations, must be very high. As a consequence, more accurate and flexible resistivity tools have been developed in recent years. We will address the family of array tools, particularly the HRLA,* which makes available a set of five galvanic resistivity measurements at different depths of investigation. Unfortunately, the most common types of environmental noise (borehole effects, shoulder-bed resistivity contrasts, invasion, the presence of dips, and anisotropy) still alter the measured resistivity, thus affecting the estimation of the true resistivity in hydrocarbon-bearing levels. To remove these alterations, we have developed a 2D resistivity modeling and inversion technique that can correct a number of environmental effects simultaneously. This paper presents the results obtained in two wells of the same reservoir in the offshore Norway area, where the sandstone bodies are interbedded with deltaic shales. The values of porosity and permeability are generally very high, and a complete set of data [conventional and special core analysis, conventional wireline logs, microresistivity imaging logs, nuclear magnetic resonance (NMR), and sedimentological analysis from core and images] is available. The 2D modeling provides a better definition of the water saturation in the thinner sandstone bodies of the sequence and in the presence of anomalous invasion profiles. When comparing the resistivity-modeling results with those obtained by standard interpretation techniques, we can see the effectiveness of the developed methodologies (both hardware and software) in improving the reservoir characterization and in maximizing the return of the investments in logging and well-data measurements. The aim of this paper is two-fold: the authors want to show how complex reservoir studies can benefit from the correct integration of heterogeneous geological data, while addressing at the same time the added value of applying a 2D modeling and inversion numerical technique to resistivity measurements to compute accurate water-saturation profiles. One of the most important issues of the formation-evaluation process is the correct estimation of all the petrophysical parameters necessary to determine the hydrocarbon content of the reservoir. This implies the need to compute a saturation profile as correct as possible. Because Sw (and, consequently, Sh)strongly depends on resistivity, porosity, and shale volume, it is of the utmost importance that the uncertainty on these measurements be kept very low. In recent years, the accuracy of resistivity tools has been improved greatly by the introduction of array measurements1,2; unfortunately, the utter complexity of real formations can often lessen the intrinsic advantages of the available logs. The most common environmental noise sources, as listed in many well-knownworks,3–5 are:Thin beds and/or dips.Deep and/or exotic invasion profiles.High resistivity contrasts between mineralized (porous) and tight layers(shoulder effects).Electrical anisotropy (usually related to laminations and grain-size variations). In most cases, their combined effects cannot be removed separately but must be treated as a unique, nonlinear problem. In previous work,6–9 it has been shown how resistivity modeling and inversion techniques can solve these kinds of problems, provided that an appropriate and fast forward model (2D or 3D) is available for all the acquired tools and that a robust and efficient inversion algorithm can be implemented. In the following paragraphs, we will show how the integration of different types of data [geological studies, wireline logs, nuclear magnetic resonance(NMR) measurements, core data], together with the most advanced numerical interpretation techniques, can produce accurate and robust results for many formation-evaluation problems, thus reducing the uncertainty of the estimation of the petrophysical parameters that are relevant in reservoir studies. The importance of geological and petrophysical information in defining a correct formation model was also addressed in a recent paper,10 which shows how this is also useful in constraining the inversion process. For this reason, we will first describe the geological setting of the reservoir and the available data, highlighting the interpretation process and the problems encountered; we will then focus on the methodology used for the evaluation of the correct water-saturation profile from resistivity measurements, demonstrating how this methodology, based on modeling and inversion techniques, can enhance the robustness of the results, as confirmed by different sources of information. Because the field study has not been yet completed, from the reservoir point of view, the conclusions will not be definitive, and the paper will end with a work-in-progress description of future activities. We will, however, be able to state the advantages of the proposed numerical modeling and inversion technique applied to laterolog array measurements, especially when in the presence of data of different qualities.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Sign in / Sign up

Export Citation Format

Share Document