Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium–Magnesium–Aluminum-Silicate (CMAS) via burner rig test

2020 ◽  
Vol 46 (11) ◽  
pp. 18698-18706
Author(s):  
Tongxin Wang ◽  
Fang Shao ◽  
Jinxing Ni ◽  
Huayu Zhao ◽  
Yin Zhuang ◽  
...  
2007 ◽  
Vol 336-338 ◽  
pp. 1759-1761 ◽  
Author(s):  
Wen Ma ◽  
Yue Ma ◽  
Sheng Kai Gong ◽  
Hui Bin Xu ◽  
Xue Qiang Cao

Lanthanum-cerium oxide (La2Ce2O7, LC) is considered as a new candidate material for thermal barrier coatings (TBCs) because of its low thermal conductivity and high phase stability between room temperature and 1673K. The LC coatings with different La2O3 contents were prepared by air plasma spraying (APS) and their lifetime was evaluated by thermal cyclic testing from room temperature to 1373 K. The structures of the coatings were characterized by XRD and SEM and the deviation of the composition from the powder was determined by EDS analysis. Long time annealing for the freestanding coating at 1673K reveals that the near stoichiometric LC coating is stable up to 240h, and the stability decreases with increasing the deviation from stoichiometric LC composition. During thermal cyclic testing, spallation was observed within the top coat near the bond coat. It is considered that the effect of intrinsic stress caused by the coefficient of thermal expansion (CTE) mismatch between top coat and bond coat is larger than that of thermally grown oxide (TGO) and the bond adherence of top coat with TGO.


2017 ◽  
Vol 100 (6) ◽  
pp. 2679-2689 ◽  
Author(s):  
John Thornton ◽  
Chris Wood ◽  
Justin A. Kimpton ◽  
Mitchell Sesso ◽  
Matthew Zonneveldt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document