scholarly journals Modeling flow in porous media with rough surfaces: Effective slip boundary conditions and application to structured packings

2017 ◽  
Vol 165 ◽  
pp. 131-146 ◽  
Author(s):  
Sylvain Pasquier ◽  
Michel Quintard ◽  
Yohan Davit
1998 ◽  
Vol 09 (08) ◽  
pp. 1479-1490 ◽  
Author(s):  
P. V. Coveney ◽  
J.-B. Maillet ◽  
J. L. Wilson ◽  
P. W. Fowler ◽  
O. Al-Mushadani ◽  
...  

We develop our existing two-dimensional lattice-gas model to simulate the flow of single phase, binary immiscible and ternary amphiphilic fluids. This involves the inclusion of fixed obstacles on the lattice, together with the inclusion of "no-slip" boundary conditions. Here we report on preliminary applications of this model to the flow of such fluids within model porous media. We also construct fluid invasion boundary conditions, and the effects of invading aqueous solutions of surfactant on oil-saturated rock during imbibition and drainage are described.


2021 ◽  
Vol 12 ◽  
pp. 1237-1251
Author(s):  
Ruifei Wang ◽  
Jin Chai ◽  
Bobo Luo ◽  
Xiong Liu ◽  
Jianting Zhang ◽  
...  

The slip boundary condition for nanoflows is a key component of nanohydrodynamics theory, and can play a significant role in the design and fabrication of nanofluidic devices. In this review, focused on the slip boundary conditions for nanoconfined liquid flows, we firstly summarize some basic concepts about slip length including its definition and categories. Then, the effects of different interfacial properties on slip length are analyzed. On strong hydrophilic surfaces, a negative slip length exists and varies with the external driving force. In addition, depending on whether there is a true slip length, the amplitude of surface roughness has different influences on the effective slip length. The composition of surface textures, including isotropic and anisotropic textures, can also affect the effective slip length. Finally, potential applications of nanofluidics with a tunable slip length are discussed and future directions related to slip boundary conditions for nanoscale flow systems are addressed.


2012 ◽  
Vol 706 ◽  
pp. 108-117 ◽  
Author(s):  
Evgeny S. Asmolov ◽  
Olga I. Vinogradova

AbstractIn many applications it is advantageous to construct effective slip boundary conditions, which could fully characterize flow over patterned surfaces. Here we focus on laminar shear flows over smooth anisotropic surfaces with arbitrary scalar slip $b(y)$, varying in only one direction. We derive general expressions for eigenvalues of the effective slip-length tensor, and show that the transverse component is equal to half of the longitudinal one, with a two times larger local slip, $2b(y)$. A remarkable corollary of this relation is that the flow along any direction of the one-dimensional surface can be easily determined, once the longitudinal component of the effective slip tensor is found from the known spatially non-uniform scalar slip.


Sign in / Sign up

Export Citation Format

Share Document