Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings

2007 ◽  
Vol 32 (2) ◽  
pp. 566-582 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Ming-Jyi Jang ◽  
Yen-Liang Yeh
2002 ◽  
Vol 124 (3) ◽  
pp. 553-561 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cheng-Ying Lo ◽  
Cha’o-Kuang Chen

This paper studies the nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings. A time-dependent mathematical model for externally pressurized porous gas journal bearings is presented. The finite difference method and the Successive Over Relation (S.O.R.) method are employed to solve the modified Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and quasi-periodic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and bearing number. The results of this study contribute to a further understanding of the nonlinear dynamics of gas-lubricated, externally pressurized, porous rotor-bearing systems.


2014 ◽  
Vol 38 (21-22) ◽  
pp. 5239-5255 ◽  
Author(s):  
Li-Hua Yang ◽  
Wei-Min Wang ◽  
Shi-Quan Zhao ◽  
Yan-Hua Sun ◽  
Lie Yu

Sign in / Sign up

Export Citation Format

Share Document