A comparative linear and nonlinear dynamic analysis of compliant cylindrical journal bearings

2013 ◽  
Vol 64 ◽  
pp. 80-92 ◽  
Author(s):  
Matthew Cha ◽  
Evgeny Kuznetsov ◽  
Sergei Glavatskih
2002 ◽  
Vol 124 (3) ◽  
pp. 553-561 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cheng-Ying Lo ◽  
Cha’o-Kuang Chen

This paper studies the nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings. A time-dependent mathematical model for externally pressurized porous gas journal bearings is presented. The finite difference method and the Successive Over Relation (S.O.R.) method are employed to solve the modified Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and quasi-periodic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and bearing number. The results of this study contribute to a further understanding of the nonlinear dynamics of gas-lubricated, externally pressurized, porous rotor-bearing systems.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Hesam Nazari ◽  
Masoud Babaei ◽  
Faraz Kiarasi ◽  
Kamran Asemi

Abstract In this study, we present a numerical solution for geometrically nonlinear dynamic analysis of functionally graded material rectangular plates excited to a moving load based on first-order shear deformation theory (FSDT) for the first time. To derive the governing equations of motion, Hamilton’s principle, nonlinear Von Karman assumptions and FSDT are used. Finally, the governing equations of motion are solved by employing the generalized differential quadratic method as a numerical solution. Natural frequencies, dynamic bending behavior and stresses of the plate for linear and nonlinear type of geometrically strain–displacement relations and different factors, including the magnitude and velocity of moving load, length ratio, power law exponent and various edge conditions are obtained and compared. Article highlights Developing generalized differential quadrature method (GDQM) solution based on FSDT for dynamic analysis of FGM plate excited by a moving load for the first time. Comparison of linear and nonlinear dynamic response of plate by considering Von-Karman assumption. Observing considerable difference between linear and nonlinear results


Sign in / Sign up

Export Citation Format

Share Document