Solitary wave solutions to the modified form of Camassa–Holm equation by means of the homotopy analysis method

2009 ◽  
Vol 39 (1) ◽  
pp. 428-435 ◽  
Author(s):  
S. Abbasbandy
2011 ◽  
Vol 66 (1-2) ◽  
pp. 117-122
Author(s):  
Qi Wang

In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose possible optimal values can be obtained by minimizing the averaged residual error, the method used here provides us with a simple way to adjust and control the convergence region of the solution. Compared with the usual homotopy analysis method, the optimal method can be used to get much faster convergent series solutions.


Author(s):  
KangLe Wang

In this work, the Bogoyavlenskii system (BS) and fractal BS are investigated by variational method for the first time. An efficient and simple scheme is proposed to seek their exact solitary wave solutions, which is called variational analysis method. The novel scheme requires only two steps, making it much attractive in practical applications, and a good result is obtained. This paper cleans up the road to the exact solitions, and it sheds a new light on the soliton theory. Finally, the physical properties of solitary wave solutions obtained are analyzed by some simulation figures.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Rashidi ◽  
D. D. Ganji ◽  
S. Dinarvand

The homotopy analysis method (HAM) is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup (WBK) equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document