optimal homotopy analysis method
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 6)

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6882
Author(s):  
Hina Firdous ◽  
Syed Tauseef Saeed ◽  
Hijaz Ahmad ◽  
Sameh Askar

The behavior of convective boundary conditions is studied to delineate their role in heat and mass relegation in the presence of radiation, chemical reaction, and hydro-magnetic forces in three-dimensional Powell–Eyring nanofluids. Implications concerning non-Fourier’s heat flux and non-Fick’s mass flux with respect to temperature nanoparticle concentration were examined to discuss the graphical attributes of the principal parameters. An efficient optimal homotopy analysis method is used to solve the transformed partial differential equations. Tables and graphs are physically interpreted for significant parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2242
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

The present research paper explains the influence of Marangoni convection on magnetohydrodynamic viscous dissipation and heat transfer on hybrid nanofluids in a rotating system among two surfaces. Then, the properties of heat and mass transfer are analysed. With the similarity transformation, the governing equations of the defined flow problem are converted into nonlinear ordinary differential equations. These compact equations are solved approximately and analytically using the optimal homotopy analysis method. The impact of different parameters is interpreted through graphs in the form of velocity and temperature profiles. The influence of the skin friction coefficient and Nusselt number are presented in the form of tables. The comparison of the present research paper and published works is also presented table.


Author(s):  
Hina Firdous ◽  
Syed Tauseef Saeed ◽  
Hijaz Ahmed ◽  
Syed Muhammad Husnine

The behavior of convective boundary conditions is studied to delineate their role in heat and mass relegation in the presence of radiation, chemical reaction, and hydromagnetic forces in three-dimensional Powell-Eyring nanofluids. Implications concerning non-Fourier’s heat flux and non-Fick’s mass flux with respect to temperature nanoparticle concentration were examined to discuss the graphical attributes of the principal parameters. An efficient optimal homotopy analysis method is used to solve the transformed partial differential equations. Tables and graphs are physically interpreted for significant parameters


Author(s):  
Ghulam Rasool ◽  
Anum Shafiq ◽  
Yu-Ming Chu ◽  
Muhammad Shoaib Bhutta ◽  
Amjad Ali

Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. Methods: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. Results: The results are plotted graphically to see the variations in three main profiles i.e. momentum, temperature and concentration profile. Conclusion: The outcomes indicate that skin friction enhances due to implementation of Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olubode Kolade Koriko ◽  
Nehad Ali Shah ◽  
S. Saleem ◽  
Jae Dong Chung ◽  
Adeola John Omowaye ◽  
...  

AbstractThis communication presents analysis of gravity-driven flow of a thixotropic fluid containing both nanoparticles and gyrotactic microorganisms along a vertical surface. To further describe the transport phenomenon, special cases of active and passive controls of nanoparticles are investigated. The governing partial differential equations of momentum, energy, nanoparticles concentration, and density of gyrotactic microorganisms equations are converted and parameterized into system of ordinary differential equations and the series solutions are obtained through Optimal Homotopy Analysis Method (OHAM). The related important parameters are tested and shown on the velocity, temperature, concentration and density of motile microorganisms profiles. It is observed that for both cases of active and passive control of nanoparticles, incremental values of thermophoretic parameters corresponds to decrease in the velocity distributions and augment the temperature distributions.


Author(s):  
M. Ijaz Khan ◽  
F. Alzahrani

This paper analyzes the influence of mixed convective fourth grade nanofluid flow by a stretchable Riga device in the presence variable thermal conductivity and mass diffusivity. Heat and mass transportation are considered with Cattaneo–Christov (CC) model. Thermal radiation and dissipation are also taken in the energy expression. Suitable transformation is employed to reduce partial differential system into nonlinear ordinary system. The governing nonlinear expression is solved via optimal homotopy analysis method. Impact of different physical variables is discussed via graphs. Velocity profile is enhanced for higher values of cross viscous parameter and fourth grade fluid variable. Fluid temperature enhances for higher estimation of thermal relaxation parameter but reverse behavior is seen for solutal concentration variable on nanoparticle concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail ◽  
Zafar Ullah ◽  
Attapol Kaewkhao ◽  
...  

AbstractThe current study characterizes the effects of Hall current, Arrhenius activation energy and binary chemical reaction on the rotating flow of hybrid nanofluid in two double disks. By the use of suitable similarity transformations, the system of partial differential equations and boundary conditions for hybrid nanofluid are transformed to ordinary differential equations which are solved through optimal homotopy analysis method. The intensified magnetic field and hybrid nanofluid performances are represented in three dimensional model with flow, heat and mass transfer. Radial velocity decreases and tangential velocity increases with the Hall parameter. Temperature rises with high values of rotation parameter while it decreases with the Prandtl number. Nanoparticles concentration enhances with the increments in Arrhenius activation energy parameter and stretching parameter due to lower disk. There exists a close and favorable harmony in the results of present and published work.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
S. Saleem

Objective of this paper is a study of the impact of heat and mass transfer on time-dependent flow of a third-grade convective fluid due to an infinitely rotating upright cone. An interesting fact is observed that the similarity solutions only exist, if we take the angular velocities of the cone and far away from the fluid as an inverse function of time. The analytical solutions of the reduced ordinary differential equations of third-grade fluids are offered by the optimal homotopy analysis method (OHAM). The results for important parameters are illustrated graphically as well as in tabular form. The precision of the present results is also checked by comparison with the numerical outcomes published earlier. The impact of non-Newtonian fluid parameters is found to decrease the primary skin-friction coefficient. There is an aggregate in Nusselt and Sherwood numbers for increasing the ratio of the buoyancy forces.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


Sign in / Sign up

Export Citation Format

Share Document