Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food

2016 ◽  
Vol 85 ◽  
pp. 57-67 ◽  
Author(s):  
Santu Ghorai ◽  
Swarup Poria
2014 ◽  
Vol 24 (06) ◽  
pp. 1450081 ◽  
Author(s):  
Guangping Hu ◽  
Xiaoling Li ◽  
Shiping Lu ◽  
Yuepeng Wang

In this paper, we consider a species predator–prey model given a reaction–diffusion system. It incorporates the Holling type II functional response and a quadratic intra-predator interaction term. We focus on the qualitative analysis, bifurcation mechanisms and pattern formation. We present the results of numerical experiments in two space dimensions and illustrate the impact of the diffusion on the Turing pattern formation. For this diffusion system, we also observe non-Turing structures such as spiral wave, target pattern and spatiotemporal chaos resulting from the time evolution of these structures.


2000 ◽  
Vol 61 (2) ◽  
pp. 1382-1385 ◽  
Author(s):  
Matthias Meixner ◽  
Scott M. Zoldi ◽  
Sumit Bose ◽  
Eckehard Schöll

2018 ◽  
Vol 122 (6) ◽  
pp. 3669-3676 ◽  
Author(s):  
Masaki Itatani ◽  
Qing Fang ◽  
Kei Unoura ◽  
Hideki Nabika

Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 1-18 ◽  
Author(s):  
S.A. Newman ◽  
W.D. Comper

The role of ‘generic’ physical mechanisms in morphogenesis and pattern formation of tissues is considered. Generic mechanisms are defined as those physical processes that are broadly applicable to living and non-living systems, such as adhesion, surface tension and gravitational effects, viscosity, phase separation, convection and reaction-diffusion coupling. They are contrasted with ‘genetic’ mechanisms, a term reserved for highly evolved, machine-like, biomolecular processes. Generic mechanisms acting upon living tissues are capable of giving rise to morphogenetic rearrangements of cytoplasmic, tissue and extracellular matrix components, sometimes leading to ‘microfingers’, and to chemical waves or stripes. We suggest that many morphogenetic and patterning effects are the inevitable outcome of recognized physical properties of tissues, and that generic physical mechanisms that act on these properties are complementary to, and interdependent with genetic mechanisms. We also suggest that major morphological reorganizations in phylogenetic lineages may arise by the action of generic physical mechanisms on developing embryos. Subsequent evolution of genetic mechanisms could stabilize and refine developmental outcomes originally guided by generic effects.


2002 ◽  
Vol 7 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Victor Kardashov ◽  
Shmuel Einav

This paper has considered a novel approach to structural recognition and control of nonlinear reaction-diffusion systems (systems with density dependent diffusion). The main consistence of the approach is interactive variation of the nonlinear diffusion and sources structural parameters that allows to implement a qualitative control and recognition of transitional system conditions (transients). The method of inverse solutions construction allows formulating the new analytic conditions of compactness and periodicity of the transients that is also available for nonintegrated systems. On the other hand, using of energy conservations laws, allows transfer to nonlinear dynamics models that gives the possiblity to apply the modern deterministic chaos theory (particularly the Feigenboum's universal constants and scenario of chaotic transitions).


Sign in / Sign up

Export Citation Format

Share Document