Soft sensor modeling for fraction yield of crude oil based on ensemble deep learning

2020 ◽  
Vol 204 ◽  
pp. 104087
Author(s):  
Ling Yi ◽  
Jun Lu ◽  
Jinliang Ding ◽  
Changxin Liu ◽  
Tianyou Chai
2020 ◽  
Vol 16 (6) ◽  
pp. 3721-3730 ◽  
Author(s):  
Xiaofeng Yuan ◽  
Jiao Zhou ◽  
Biao Huang ◽  
Yalin Wang ◽  
Chunhua Yang ◽  
...  

2018 ◽  
Vol 14 (7) ◽  
pp. 3235-3243 ◽  
Author(s):  
Xiaofeng Yuan ◽  
Biao Huang ◽  
Yalin Wang ◽  
Chunhua Yang ◽  
Weihua Gui

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3430
Author(s):  
Jean Mário Moreira de Lima ◽  
Fábio Meneghetti Ugulino de Araújo

Soft sensors based on deep learning have been growing in industrial process applications, inferring hard-to-measure but crucial quality-related variables. However, applications may present strong non-linearity, dynamicity, and a lack of labeled data. To deal with the above-cited problems, the extraction of relevant features is becoming a field of interest in soft-sensing. A novel deep representative learning soft-sensor modeling approach is proposed based on stacked autoencoder (SAE), mutual information (MI), and long-short term memory (LSTM). SAE is trained layer by layer with MI evaluation performed between extracted features and targeted output to evaluate the relevance of learned representation in each layer. This approach highlights relevant information and eliminates irrelevant information from the current layer. Thus, deep output-related representative features are retrieved. In the supervised fine-tuning stage, an LSTM is coupled to the tail of the SAE to address system inherent dynamic behavior. Also, a k-fold cross-validation ensemble strategy is applied to enhance the soft-sensor reliability. Two real-world industrial non-linear processes are employed to evaluate the proposed method performance. The obtained results show improved prediction performance in comparison to other traditional and state-of-art methods. Compared to the other methods, the proposed model can generate more than 38.6% and 39.4% improvement of RMSE for the two analyzed industrial cases.


Sign in / Sign up

Export Citation Format

Share Document