Enhanced secondary aerosol formation driven by excess ammonia during fog episodes in Delhi, India

Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133155
Author(s):  
Prodip Acharja ◽  
Kaushar Ali ◽  
Sachin D. Ghude ◽  
Vinayak Sinha ◽  
Baerbel Sinha ◽  
...  
2021 ◽  
Vol 150 ◽  
pp. 106426
Author(s):  
Jie Tian ◽  
Qiyuan Wang ◽  
Yong Zhang ◽  
Mengyuan Yan ◽  
Huikun Liu ◽  
...  

2021 ◽  
Vol 21 (10) ◽  
pp. 7963-7981
Author(s):  
Zhaomin Yang ◽  
Li Xu ◽  
Narcisse T. Tsona ◽  
Jianlong Li ◽  
Xin Luo ◽  
...  

Abstract. Aromatic hydrocarbons can dominate the volatile organic compound budget in the urban atmosphere. Among them, 1,2,4-trimethylbenzene (TMB), mainly emitted from solvent use, is one of the most important secondary organic aerosol (SOA) precursors. Although atmospheric SO2 and NH3 levels can affect secondary aerosol formation, the influenced extent of their impact and their detailed driving mechanisms are not well understood. The focus of the present study is to examine the chemical compositions and formation mechanisms of SOA from TMB photooxidation influenced by SO2 and/or NH3. Here, we show that SO2 emission could considerably enhance aerosol particle formation due to SO2-induced sulfate generation and acid-catalyzed heterogeneous reactions. Orbitrap mass spectrometry measurements revealed the generation of not only typical TMB products but also hitherto unidentified organosulfates (OSs) in SO2-added experiments. The OSs designated as being of unknown origin in earlier field measurements were also detected in TMB SOA, indicating that atmospheric OSs might also be originated from TMB photooxidation. For NH3-involved experiments, results demonstrated a positive correlation between NH3 levels and particle volume as well as number concentrations. The effects of NH3 on SOA composition were slight under SO2-free conditions but stronger in the presence of SO2. A series of multifunctional products with carbonyl, alcohols, and nitrate functional groups were tentatively characterized in NH3-involved experiments based on infrared spectra and mass spectrometry analysis. Plausible formation pathways were proposed for detected products in the particle phase. The volatility distributions of products, estimated using parameterization methods, suggested that the detected products gradually condense onto the nucleation particles to contribute to aerosol formation and growth. Our results suggest that strict control of SO2 and NH3 emissions might remarkably reduce organosulfates and secondary aerosol burden in the atmosphere. Updating the aromatic oxidation mechanism in models could result in more accurate treatment of particle formation for urban regions with considerable SO2, NH3, and aromatics emissions.


2019 ◽  
Vol 19 (22) ◽  
pp. 14329-14338 ◽  
Author(s):  
Misti Levy Zamora ◽  
Jianfei Peng ◽  
Min Hu ◽  
Song Guo ◽  
Wilmarie Marrero-Ortiz ◽  
...  

Abstract. Severe wintertime haze events with exceedingly high levels of aerosols have occurred frequently in China in recent years, impacting human health, weather, and the climate. A better knowledge of the formation mechanism and aerosol properties during haze events is helpful for the development of effective mitigation policies. In this study, we present field measurements of aerosol properties at an urban site in Beijing during January and February 2015. A suite of aerosol instruments were deployed to measure a comprehensive set of aerosol chemical and physical properties. The evolution of haze events in winter, dependent on meteorological conditions, consistently involves new particle formation during the clean period and subsequently continuous growth from the nucleation mode particles to submicron particles over the course of multiple days. Particulate organic matter is primarily responsible for producing the nucleation mode particles, while secondary organic and inorganic components jointly contribute to the high aerosol mass observed during haze events. The average effective density and hygroscopic parameter (κ) of ambient particles are approximately 1.37 g cm−3 and 0.25 during the clean period and increase to 1.42 g cm−3 and 0.4 during the polluted period, indicating the formation of secondary inorganic species from the continuous growth of nucleation mode particles. Our results corroborate that the periodic cycles of severe haze formation in Beijing during winter are attributed to the efficient nucleation and secondary aerosol growth under high gaseous precursor concentrations and the stagnant air conditions, highlighting that reductions in emissions of aerosol precursor gases are critical for remedying secondary aerosol formation and thereby mitigating haze pollution.


2021 ◽  
Vol 759 ◽  
pp. 143540
Author(s):  
Jing Ding ◽  
Qili Dai ◽  
Yufen Zhang ◽  
Jiao Xu ◽  
Yanqi Huangfu ◽  
...  

2020 ◽  
Vol 737 ◽  
pp. 140333
Author(s):  
Patrick Roth ◽  
Jiacheng Yang ◽  
Christos Stamatis ◽  
Kelley C. Barsanti ◽  
David R. Cocker ◽  
...  

2016 ◽  
Author(s):  
Biwu Chu ◽  
Xiao Zhang ◽  
Yongchun Liu ◽  
Hong He ◽  
Yele Sun ◽  
...  

Abstract. The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene/NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present or not. Sulfate, organic aerosol, nitrate and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly among the four species with respect to SO2 concentration under ammonia-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products, and therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to that without NH3. By applying positive matrix factorization (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidized organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of the acid products on SOA formation in the heterogeneous process. The other factor, assigned to the highly oxidized organic component and some nitrogen-containing organics (NOC), increased with SO2 under a NH3-rich environment, with NOC (organonitrates and NOC with reduced N) contributing most of the increase.


Sign in / Sign up

Export Citation Format

Share Document