primary emissions
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 39)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Yao He ◽  
...  

Abstract. Atmospheric processes, including both primary emissions and secondary formation, may exert complex effects on aerosol hygroscopicity, which is of significant importance in understanding and quantifying the effect of aerosols on climate and human health. In order to explore the influence of local emissions and secondary formation processes on aerosol hygroscopicity, we investigated the hygroscopic properties of submicron aerosol particles at a rural site in the North China Plain (NCP) in winter 2018. This was conducted by simultaneous measurements of aerosol hygroscopicity and chemical composition, using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM). The hygroscopicity results showed that the particles during the entire campaign were mainly externally mixed, with a more hygroscopic (MH) mode and a less hygroscopic (LH) particles mode. The mean hygroscopicity parameter values (κmean) derived from hygroscopicity measurements for particles at 60, 100, 150, and 200 nm were 0.16, 0.18, 0.16, and 0.15, respectively. During this study, we classified two distinct episodes with different RH/T conditions, indicative of different primary emissions and secondary formation processes. It was observed that aerosols at all measured sizes were more hygroscopic under the high RH (HRH) episode than those under the low RH (LRH) episode. During the LRH, κ decreased with increasing particle size, which may be explained by the enhanced domestic heating at low temperature, causing large emissions of non- or less-hygroscopic primary aerosols. This is particularly obvious for 200 nm particles, with a dominant number fraction (> 50 %) of LH mode particles. Using O : C-dependent hygroscopic parameters of secondary organic compounds (κSOA), closure analysis between the HTDMA_measured κ and the ACSM_derived κ was carried out. The results showed that κSOA under the LRH episode was less sensitive to the changes in organic oxidation level, while κSOA under the HRH had a relatively stronger dependency on the organic O : C. This feature suggests that the different sources and aerosol evolution processes, partly resulting from the variation in atmospheric RH/T conditions, may lead to significant changes in aerosol chemical composition, which will further influence their corresponding physical properties.


2021 ◽  
Author(s):  
Jiaxing Sun ◽  
Yele Sun ◽  
Conghui Xie ◽  
Weiqi Xu ◽  
Chun Chen ◽  
...  

Abstract. The radiative forcing of black carbon (BC) depends strongly on its mixing state in different chemical environments. Here, we analyzed the chemical composition and mixing state of BC-containing particles by using a single particle aerosol mass spectrometer and investigated their impacts on light absorption enhancement (Eabs) at an urban (Beijing) and a rural site (Gucheng) in North China Plain. While the BC was dominantly mixed with organic carbon (OC), nitrate and sulfate at both urban and rural sites, the rural site showed much higher fraction of BC coated with OC and nitrate (36 % vs. 15 – 20 %). Moreover, the BC mixing state evolved significantly as a function of relative humidity with largely increased coatings of OC-nitrate and nitrate at high RH levels. By linking with the bulk composition of organic aerosol (OA), we found that the OC coated on BC comprised dominantly secondary OA in Beijing, while primary and secondary OA were similarly important in Gucheng. Furthermore, Eabs was highly dependent on the secondary inorganic aerosol coated on BC at both sites, while the coated primary OC also resulted in an Eabs of ~1.2 for relatively fresh BC particles at the rural site. Positive matrix factorization analysis was performed to quantify the impact of different mixing state on Eabs. Our results showed the small Eabs (1.06 ~ 1.11) for BC particles from fresh primary emissions, while the Eabs increased significantly above 1.3 when BC was aged rapidly with increased coatings of OC-nitrate or nitrate, and it can reach above 1.4 as sulfate was involved in BC aging.


2021 ◽  
Vol 3 ◽  
Author(s):  
Liam A. Bullock ◽  
Rachael H. James ◽  
Juerg Matter ◽  
Phil Renforth ◽  
Damon A. H. Teagle

There is growing urgency for CO2 removal strategies to slow the increase of, and potentially lower, atmospheric CO2 concentrations. Enhanced weathering, whereby the natural reactions between CO2 and silicate minerals that produce dissolved bicarbonate ions are accelerated, has the potential to remove substantial CO2 on decadal to centennial timescales. The global mining industry produces huge volumes of fine wastes that could be utilised as feedstock for enhanced weathering. We have compiled a global database of the enhanced weathering potential of mined metal and diamond commodity tailings from silicate-hosted deposits. Our data indicate that all deposit types, notably mafic and ultramafic rock-hosted operations and high tonnage Cu-hosting deposits, have the potential to capture ~1.1–4.5 Gt CO2 annually, between 31 and 125% of the industry's primary emissions. However, current knowledge suggests that dissolution rates of many minerals are relatively slow, such that only a fraction (~3–21%) of this potential may be realised on timescales of <50 years. Field trials in mine settings are urgently needed and, if this prediction is confirmed, then methodologies for accelerating weathering reactions will need to be developed.


Author(s):  
Carmelia Mariana DRAGOMIR BĂLĂNICĂ ◽  
Daniela Ecaterina ZECA ◽  
Vasile BAȘLIU ◽  
Ștefan PINTILIE

The article focuses on the evaluation of PM2.5 and PM10, pollutants resulting from the metallurgical industry in Romania. The analysed period is 2008-2018 and the dataset was provided by the National Institute of Statistics. The purpose of this paper is to examine the impact of final energy consumption in the metallurgical industry on PM10 and PM2.5 emissions. We included in the study three fundamental factors: the final energy consumption in the metallurgical industry and the particulate matter (PM10 and PM2.5). The average of PM10 for reference period is 4026 Tone (Mg) while for the PM2.5 the average is 3645 Tone (Mg). The trend of final energy consumption in the metallurgical industry is identical to the trend of PM2.5 and PM10, which indicates that this factor has a major influence on the amount of PM2.5 and PM10 emissions. PM2.5 and PM10 emission factors represent primary emissions from the metallurgical industry activities and do not consider the formation of secondary aerosol from chemical reaction in the environment afterwards the discharge.


Author(s):  
Liyuan Zhou ◽  
Tengyu Liu ◽  
Dawen Yao ◽  
Hai Guo ◽  
Chunlei Cheng ◽  
...  

2021 ◽  
Vol 21 (9) ◽  
pp. 7039-7052
Author(s):  
Xiaojing Shen ◽  
Junying Sun ◽  
Fangqun Yu ◽  
Ying Wang ◽  
Junting Zhong ◽  
...  

Abstract. Influenced by the spread of the global 2019 novel coronavirus (COVID-19) pandemic, primary emissions of particles and precursors associated with anthropogenic activities decreased significantly in China during the Chinese New Year of 2020 and the lockdown period (24 January–16 February 2020). The 2-month measurements of the number size distribution of neutral particles and charged ions showed that during the lockdown (LCD) period, the number concentration of particles smaller than 100 nm decreased by approximately 40 % compared to the pre-LCD period in January. However, the accumulation mode particles increased by approximately 20 % as several polluted episodes contributed to secondary aerosol formation. In this study, new particle formation (NPF) events were found to be enhanced in the nucleation and growth processes during the LCD period, as indicated by the higher formation rate of 2 nm particles (J2) and the subsequent growth rate (GR). The relevant precursors, e.g., SO2 and NO2, showed a clear reduction, and O3 increased by 80 % during LCD period, as compared with pre-LCD. The volatile organic vapors showed different trends due to their sources. The proxy sulfuric acid during the LCD period increased by approximately 26 %, as compared with pre-LCD. The major oxidants (O3, OH, and NO3) of VOCs were also found to be elevated during LCD. That indicated higher J2 and GR (especially below 5 nm) during the LCD period were favored by the increased concentration level of condensing vapors and decreased condensation sink. Several heavy haze episodes have been reported by other studies during the LCD period; however, the increase in nanoparticle number concentration should also be considered. Some typical NPF events produced a high number concentration of nanoparticles that intensified in the following days to create severe aerosol pollution under unfavorable meteorological conditions. Our study confirms a significant enhancement of the nucleation and growth process of nanoparticles during the COVID-19 LCD in Beijing and highlights the necessity of controlling nanoparticles in current and future air quality management.


2021 ◽  
Vol 150 ◽  
pp. 106426
Author(s):  
Jie Tian ◽  
Qiyuan Wang ◽  
Yong Zhang ◽  
Mengyuan Yan ◽  
Huikun Liu ◽  
...  

2021 ◽  
Vol 21 (7) ◽  
pp. 5463-5476
Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Ying Li ◽  
Zhiqiang Zhang ◽  
...  

Abstract. Volatility and viscosity have substantial impacts on gas–particle partitioning, formation and evolution of aerosol and hence the predictions of aerosol-related air quality and climate effects. Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) in summer and winter were investigated by using a thermodenuder coupled with a high-resolution aerosol mass spectrometer. The effective saturation concentration (C*) of organic aerosol (OA) in summer was smaller than that in winter (0.55 µg m−3 vs. 0.71–0.75 µg m−3), indicating that OA in winter in the NCP is more volatile due to enhanced primary emissions from coal combustion and biomass burning. The volatility distributions varied and were largely different among different OA factors. In particular, we found that hydrocarbon-like OA (HOA) contained more nonvolatile compounds compared to coal-combustion-related OA. The more oxidized oxygenated OA (MO-OOA) showed overall lower volatility than less oxidized OOA (LO-OOA) in both summer and winter, yet the volatility of MO-OOA was found to be relative humidity (RH) dependent showing more volatile properties at higher RH. Our results demonstrated the different composition and chemical formation pathways of MO-OOA under different RH levels. The glass transition temperature (Tg) and viscosity of OA in summer and winter are estimated using the recently developed parameterization formula. Our results showed that the Tg of OA in summer in Beijing (291.5 K) was higher than that in winter (289.7–290.0 K), while it varied greatly among different OA factors. The viscosity suggested that OA existed mainly as solid in winter in Beijing (RH = 29 ± 17 %), but as semisolids in Beijing in summer (RH = 48 ± 25 %) and Gucheng in winter (RH = 68 ± 24 %). These results have the important implication that kinetically limited gas–particle partitioning may need to be considered when simulating secondary OA formation in the NCP.


2021 ◽  
Author(s):  
Elisa Bergas-Massó ◽  
María Gonçalves Ageitos ◽  
Stelios Myriokefalitakis ◽  
Twan van Noije ◽  
Ron Miller ◽  
...  

<p>Atmospheric deposition of soluble iron (Fe) to the ocean has an impact on oceanic primary productivity, thus on carbon dioxide uptake. Understanding how anthropogenic activity influences the atmospheric Fe cycle is key to project ocean biogeochemical cycles and has been barely explored.</p><p>In this study, we assess past, present, and future soluble Fe deposition to the ocean, accounting for natural and anthropogenic sources, using an advanced atmospheric Fe cycle module implemented into the EC-Earth3 Earth System Model. This version of the model considers primary emissions of insoluble and soluble Fe forms associated with dust minerals, and anthropogenic and biomass burning combustion aerosols. Fe solubilization processes in the atmosphere include 1)  proton-promoted, 2)  oxalate-promoted (with oxalate calculated on-line), and 3) photo-reductive Fe dissolution. We run time-slice simulations using the atmosphere-chemistry model configuration constrained by past, present, and future ocean states. The necessary sea surface temperature and sea ice concentration climatologies are obtained from EC-Earth3 CMIP6 coupled model experiments. Future projections rely on three CMIP6 scenarios representing different socio-economic pathways and end-of-the-century forcing levels: SSP1-2.6, SSP2-4.5, and SSP3-7.0. </p><p>Our setup allows us to estimate the soluble Fe deposition into the ocean while quantifying the contribution from dust, biomass burning, and anthropogenic combustion sources separately under a range of scenarios. Our preliminary results suggest nearly a 50% increase in soluble Fe deposition for the present time since the industrial revolution, attributed to increased atmospheric acidity and oxalate concentrations that result in a more efficient atmospheric processing. Future projections of soluble Fe show a high correlation between anthropogenic activity and solubility of deposited Fe, scenarios with higher anthropogenic emissions consistently yield a higher fraction of soluble over total deposited Fe. Our results also suggest diverging trends for the different ocean basins. Disentangling the factors that drive those differences in regions where Fe is known to be the limiting nutrient, such as the North Pacific or the Southern Ocean, is fundamental to improve our understanding of the atmospheric Fe cycle and its consequences for  the ocean biogeochemistry.  </p>


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Yuyang Li ◽  
Michael Lawler ◽  
Jiming Hao ◽  
James Smith ◽  
...  

<p>Ultrafine particles (UFPs) dominate the particle number population in the urban atmosphere and revealing their chemical composition is important. The thermal desorption chemical ionization mass spectrometer (TDCIMS) can semi-continuously measure UFP composition at the molecular level. We modified a TDCIMS and deployed it in urban Beijing. Radioactive materials in the TDCIMS for aerosol charging and chemical ionization were replaced by soft X-ray ionizers so that it can be operated in countries with tight regulations on radioactive materials. Protonated N-methyl-2-pyrrolidone ions were used as the positive reagent ion, which selectively detects ammonia and low-molecular weight-aliphatic amines and amides vaporized from the particle phase. With superoxide as the negative reagent ion, a wide range of inorganic and organic compounds were observed, including nitrate, sulfate, aliphatic acids with carbon numbers up to 18, and highly oxygenated CHO, CHON, and CHOS compounds. The latter two can be attributed to parent ions or the decomposition products of organonitrates and organosulfates/organosulfonates, respectively. Components from both primary emissions and secondary formation of UFPs were identified. Compared to the UFPs measured at forest and marine sites, those in urban Beijing contain more nitrogen-containing and sulfur-containing compounds. These observations illustrate unique features of the UFPs in this polluted urban environment and provide insights into their origins.</p>


Sign in / Sign up

Export Citation Format

Share Document