scholarly journals Water diffusion in carbon nanotubes under directional electric frields: Coupling between mobility and hydrogen bonding

2020 ◽  
Vol 537 ◽  
pp. 110849
Author(s):  
Débora N. de Freitas ◽  
Bruno H.S. Mendonça ◽  
Mateus H. Köhler ◽  
Marcia C. Barbosa ◽  
Matheus J.S. Matos ◽  
...  
2020 ◽  
Vol 153 (24) ◽  
pp. 244504
Author(s):  
Bruno H. S. Mendonça ◽  
Patricia Ternes ◽  
Evy Salcedo ◽  
Alan B. de Oliveira ◽  
Marcia C. Barbosa

Nano Letters ◽  
2006 ◽  
Vol 6 (4) ◽  
pp. 633-639 ◽  
Author(s):  
Alberto Striolo

2018 ◽  
Vol 54 (31) ◽  
pp. 3823-3826 ◽  
Author(s):  
Yusuke Nakanishi ◽  
Haruka Omachi ◽  
Natalie A. Fokina ◽  
Peter R. Schreiner ◽  
Jonathan Becker ◽  
...  

1,6-Bis(hydroxymethyl)diamantane forms one-dimensional networks inside carbon nanotubes through hydrogen bonding that leads to higher filling-yield as compared with pristine diamantane.


2021 ◽  
Author(s):  
Ding Lou ◽  
Hammad Younes ◽  
Jack Yang ◽  
Bharat Jasthi ◽  
George Hong ◽  
...  

Abstract Carbon nanotubes (CNTs) and nanofibers (CNFs) are well-known nano additives that produce coating materials with high electrical and thermal conductivity and corrosion resistance. In this paper, coating materials incorporating hydrogen bonding offered significantly lower electrical resistance. The hydrogen bonding formed between functionalized carbon nanotubes and ethanol helped create a well-dispersed carbon nanotube network as the electron pathways. Electrical resistivity as low as 6.8 Ω⋅cm has been achieved by adding 4.5 wt.% functionalized multiwalled carbon nanotubes (MWNT-OH) to 75%Polyurethane/25%Ethanol. Moreover, the thermal conductivity of Polyurethane was improved by 332% with 10 wt.% addition of CNF. Electrochemical methods were used to evaluate the anti-corrosion properties of the fabricated coating materials. Polyurethane with the addition of 3 wt.% of MWNT-OH showed an excellent corrosion rate of 5.105×10-3 mm/year, with a protection efficiency of 99.5% against corrosive environments. The adhesion properties of the coating materials were measured following ASTM standard test methods. Polyurethane with 3 wt.% of MWNT-OH belonged to class 5 (ASTM D3359), indicating the outstanding adhesion of the coating to the substrate. These nano coatings with enhanced electrical, thermal, and anti-corrosion properties consist of a choice of traditional coating materials, such as Polyurethane, yielding coating durability with the ability to tailor the electrical and thermal properties to fit the desired application.


2012 ◽  
Vol 14 (2) ◽  
pp. 964-971 ◽  
Author(s):  
Yong-gang Zheng ◽  
Hong-fei Ye ◽  
Zhong-qiang Zhang ◽  
Hong-wu Zhang

2020 ◽  
Vol 152 (2) ◽  
pp. 024708 ◽  
Author(s):  
Bruno H. S. Mendonça ◽  
Patricia Ternes ◽  
Evy Salcedo ◽  
Alan B. de Oliveira ◽  
Marcia C. Barbosa

Sign in / Sign up

Export Citation Format

Share Document