Enhanced electrical conductivity of anticorrosive coatings by functionalized carbon nanotubes: effect of hydrogen bonding

2021 ◽  
Author(s):  
Ding Lou ◽  
Hammad Younes ◽  
Jack Yang ◽  
Bharat Jasthi ◽  
George Hong ◽  
...  

Abstract Carbon nanotubes (CNTs) and nanofibers (CNFs) are well-known nano additives that produce coating materials with high electrical and thermal conductivity and corrosion resistance. In this paper, coating materials incorporating hydrogen bonding offered significantly lower electrical resistance. The hydrogen bonding formed between functionalized carbon nanotubes and ethanol helped create a well-dispersed carbon nanotube network as the electron pathways. Electrical resistivity as low as 6.8 Ω⋅cm has been achieved by adding 4.5 wt.% functionalized multiwalled carbon nanotubes (MWNT-OH) to 75%Polyurethane/25%Ethanol. Moreover, the thermal conductivity of Polyurethane was improved by 332% with 10 wt.% addition of CNF. Electrochemical methods were used to evaluate the anti-corrosion properties of the fabricated coating materials. Polyurethane with the addition of 3 wt.% of MWNT-OH showed an excellent corrosion rate of 5.105×10-3 mm/year, with a protection efficiency of 99.5% against corrosive environments. The adhesion properties of the coating materials were measured following ASTM standard test methods. Polyurethane with 3 wt.% of MWNT-OH belonged to class 5 (ASTM D3359), indicating the outstanding adhesion of the coating to the substrate. These nano coatings with enhanced electrical, thermal, and anti-corrosion properties consist of a choice of traditional coating materials, such as Polyurethane, yielding coating durability with the ability to tailor the electrical and thermal properties to fit the desired application.

Author(s):  
E. A. Vorobyeva ◽  
I. V. Makarenko ◽  
A. V. Makunin ◽  
V. A. Trifonov ◽  
N. G. Chechenin

2012 ◽  
Vol 62 ◽  
pp. 40-43 ◽  
Author(s):  
M.K. Samani ◽  
N. Khosravian ◽  
G.C.K. Chen ◽  
M. Shakerzadeh ◽  
D. Baillargeat ◽  
...  

2020 ◽  
Vol 1000 ◽  
pp. 115-122
Author(s):  
Nono Darsono ◽  
Murni Handayani ◽  
Franciska Pramuji Lestari ◽  
Aprilia Erryani ◽  
I Nyoman Gede Putrayasa ◽  
...  

Magnesium Alloys have the potential to be applied in the various fields of applications including biomaterials. Magnesium Alloys are an interesting alloy due to its high strength to density ratio. They have been proposed as a biodegradable implant material due to its friendly effect to human body compared to another alloy. Besides its good biodegradable properties, it has a disadvantage of low hardness and corrosion properties. In order to overcome this, it has been combined with other metals such as Zinc (Zn) or Copper (Cu). To increase mechanical properties, we used Carbon Nanotubes (CNT) as reinforcement. Magnesium-Zinc (Mg-xZn) CNTs composites with several compositions was prepared by using powder metallurgy and sintered in the presence of flowing Argon (Ar) gas in tube furnace. Mg-Zn Alloy with the composition of 4% and 6% of Zn and the variation of CNTs at 0.1%, 0.3 %, and 0.5% was also prepared. Hardness testing by using microvickers showed that CNTs can increase the alloy hardness which the maximum hardness is 53.6 HV. The corrosion rates as low as 175.5 mpy exhibited for the Mg-Alloy with the composition of Mg-4-Zn with 0.1 wt.% of CNTs


Sign in / Sign up

Export Citation Format

Share Document