multiwalled carbon
Recently Published Documents


TOTAL DOCUMENTS

7471
(FIVE YEARS 1259)

H-INDEX

173
(FIVE YEARS 19)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 675
Author(s):  
M. Amin ◽  
B. M. Abdullah ◽  
S. J. Rowley-Neale ◽  
S. Wylie ◽  
A. J. Slate ◽  
...  

Carbon nanomaterials have gained significant interest over recent years in the field of electrochemistry, and they may be limited in their use due to issues with their difficulty in dispersion. Enzymes are prime components for detecting biological molecules and enabling electrochemical interactions, but they may also enhance multiwalled carbon nanotube (MWCNT) dispersion. This study evaluated a MWCNT and diamine oxidase enzyme (DAO)-functionalised screen-printed electrode (SPE) to demonstrate improved methods of MWCNT functionalisation and dispersion. MWCNT morphology and dispersion was determined using UV-Vis spectroscopy (UV-Vis) and scanning electron microscopy (SEM). Carboxyl groups were introduced onto the MWCNT surfaces using acid etching. MWCNT functionalisation was carried out using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by DAO conjugation and glutaraldehyde (GA) crosslinking. Modified C-MWNCT/EDC-NHS/DAO/GA was drop cast onto SPEs. Modified and unmodified electrodes after MWCNT functionalisation were characterised using optical profilometry (roughness), water contact angle measurements (wettability), Raman spectroscopy and energy dispersive X-ray spectroscopy (EDX) (vibrational modes and elemental composition, respectively). The results demonstrated that the addition of the DAO improved MWCNT homogenous dispersion and the solution demonstrated enhanced stability which remained over two days. Drop casting of C-MWCNT/EDC-NHS/DAO/GA onto carbon screen-printed electrodes increased the surface roughness and wettability. UV-Vis, SEM, Raman and EDX analysis determined the presence of carboxylated MWCNT variants from their non-carboxylated counterparts. Electrochemical analysis demonstrated an efficient electron transfer rate process and a diffusion-controlled redox process. The modification of such electrodes may be utilised for the development of biosensors which could be utilised to support a range of healthcare related fields.


Author(s):  
Noufal Merukan Chola ◽  
Vikram Singh ◽  
Vivek Verma ◽  
Rajaram K Nagarale

Abstract Aqueous zinc batteries are increasingly gaining attention of the researchers in recent years because of their environmental and user friendliness as well as the economic benefits of the zinc metal. Herein we report a ferrocene based organic cathode synthesized by following green chemistry principle and stabilized by low temperature thermal encapsulation in multiwalled carbon nano tubes (MWCNTs) for stable electrochemical performance. Successful intercalation was confirmed by XRD, Raman, FTIR spectra, TEM-HAADF imaging. Without encapsulation, material exhibited initial capacity of 64.7 mAhg-1 which was drastically faded with time due to dissolution of active material. However, by low temperature thermal encapsulation, the capacity was remarkably improved to 71.3 mAhg-1 with 94% columbic efficiency and 91% capacity retention at a current density of 75mAg-1 in a 100 charge/discharge cycles. The stability of the electrode has been explained on the basis of a friendly host-guest interaction between CNTs and the organic molecules by π-π stacking, dipole-dipole and dipole induced dipole interactions with detailed electrochemical and spectroscopic characterization. From this study we conclude that the thermal intercalation in MWCNTs has been found to be excellent method to stabilize the electrode materials in battery application.


Author(s):  
Agus Subagio ◽  
Heydar Ruffa Taufiq ◽  
Ali Khumaeni ◽  
Ngurah Ayu Ketut Umiati ◽  
Kusworo Adi

Abstract Multiwalled carbon nanotubes have great potential when applied as biosensors. Their properties, especially as electrodes with electrochemical characteristics, offer strong benefits for developing biosensors. This research has been able to integrate multiwalled carbon nanotubes (MWCNTs) with Au nanoparticles (Au-NPs) to obtain several new superior properties. Cysteaminium chloride is used to link MWCNTs and Au-NPs while binding to specific antibodies to make them more sensitive to some diseases or viruses. The data on the success of the bonding of MWCNTs/Au-NPs were tested using three characterizations, namely FTIR, SEM, and XRD. Based on the results of testing electrochemical properties using the CV and EIS tests, the capacitance value of 6,363 Fg-1 and the Rct value of 717,9 Ω, respectively. This demonstrates good adhesion and electron transfer properties from the electrolyte to the probe and electrode.


2022 ◽  
Vol 6 (1) ◽  
pp. 26
Author(s):  
Dhivakar Rajendran ◽  
Rajarajan Ramalingame ◽  
Anurag Adiraju ◽  
Hanen Nouri ◽  
Olfa Kanoun

Dispersion of carbon nanotubes (CNT) in solvents and/or polymers is essential to reach the full potential of the CNTs in nanocomposite materials. Dispersion of CNTs is especially challenging due to the van-der-Waals attraction forces between the CNTs, which let them tend to re-bundle and/or re-aggregate. This paper presents a brief analysis of the quality and stability of functionalized multiwalled carbon nanotubes (fMWCNT) dispersion on polar solvents. A comparative study of functionalized CNT dispersion in water, methyl, and alcohol-based organic solvents has been carried out and the dispersion has been characterized by UV-VIS spectroscopy, electrochemical characterization such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Visual analysis of the dispersion has been investigated for up to 14 days to assess the dispersion’s stability. Based on the material characterization, it was observed that the degree of affinity fMWCNT with -COOH group highly depends on the polarity of the solvent, where the higher the polarity, the better the interaction of fMWCNT with solvents.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Lina Han ◽  
Zemin Li ◽  
Yang Feng ◽  
Lijiang Wang ◽  
Bowen Li ◽  
...  

Lithium sulfur (Li-S) batteries stand out among many new batteries for their high energy density. However, the intermediate charge–discharge product dissolves easily into the electrolyte to produce a shuttle effect, which is a key factor limiting the rapid development of Li-S batteries. Among the various materials used to solve the challenges related to pure sulfur cathodes, biomass derived carbon materials are getting wider research attention. In this work, we report on the fabrication of cathode materials for Li-S batteries based on composites of sulfur and biomass-derived porous ramie carbon (RC), which are coated with multiwalled carbon nanotubes (MWCNTs). RC can not only adsorb polysulfide in its pores, but also provide conductive channels. At the same time, the MWCNTs coating further reduces the dissolution of polysulfides into the electrolyte and weakens the shuttle effect. The sulfur loading rate of RC is 66.3 wt.%. As a result, the initial discharge capacity of the battery is 1325.6 mAh·g−1 at 0.1 C long cycle, and it can still maintain 812.5 mAh·g−1 after 500 cycles. This work proposes an effective double protection strategy for the development of advanced Li-S batteries.


Sign in / Sign up

Export Citation Format

Share Document