Preparative isolation and purification of trans-3,5,4′-trihydroxystilbene-4′-O-β-d-glucopyranoside and (+)catechin from Rheum tanguticum Maxim. ex Balf. using high-speed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase

2005 ◽  
Vol 1092 (2) ◽  
pp. 241-245 ◽  
Author(s):  
Wei Jin ◽  
Peng-Fei Tu
Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 91 ◽  
Author(s):  
Pian Zhang ◽  
Kang-Ling Zhu ◽  
Jun Zhang ◽  
Yan Li ◽  
Heng Zhang ◽  
...  

In order to obtain high-purity flavonoid products, the extracts from mulberry leaves were separated and purified via high-speed counter-current chromatography (HSCCC). Moreover, the product was detected via high-performance liquid chromatography (HPLC). The characteristic absorption wavelength of the rutin standard for HSCCC detection and HPLC analysis at 257 nm was tested by ultraviolet scanning analysis. The effect of solvent systems and mobile phase flow rate on the separation efficiency were then researched. Finally, the solvent system of V(ethyl acetate):V(n-butanol):V(water) = 4:1:5 was selected as the operating system for HSCCC. This work theoretically analyzed the impact of the molecular structure and polarity of flavonoids on the choice of solvent systems. The results showed that the mobile phase flow rate had a great influence on the separation efficiency. Furthermore, the separation efficiency increased as the mobile phase flow rate decreased. When the mobile phase flow rate was 5 mL/min, the peak time for flavonoids was 140 min, the retention of the stationary phase was 56.4%, and the purity of the product reached 93.8%. The results of this study greatly improved the purity of flavonoids in mulberry leaf and provided a strong support for the separation and purification of mulberry leaf extract.


Sign in / Sign up

Export Citation Format

Share Document