evaporative light scattering
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 46)

H-INDEX

52
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7705
Author(s):  
Magdalena Ligor ◽  
Anna Kiełbasa ◽  
Ileana-Andreea Ratiu ◽  
Bogusław Buszewski

Saponins are an important group of secondary metabolites naturally occurring in plants with important properties like: antibacterial, antiviral and antifungal. Moreover, they are widely used in the cosmetic industry and household chemistry. The sapogenins are saponin hydrolyses products, frequently used to facilitate saponin detection. In the present study, an improved methodology for isolation and separation of five sapogenins extracted from nettle (Urtica dioica L.), white dead-nettle (Lamium album L.), common soapwort (Saponaria officinalis L.) and washnut (Sapindus mukorossi Gaertn.) was developed using ultra-high-performance liquid chromatography with an evaporative light-scattering detector (UHPLC-ELSD). Based on quantitative analysis, the highest content of hederagenin (999.1 ± 6.3 µg/g) and oleanolic acid (386.5 ± 27.7 µg/g) was found in washnut extracts. Good recoveries (71% ± 6 up to 99% ± 8) were achieved for four investigated targets, while just 22.2% ± 0.5 was obtained for the fifth one. Moreover, hederagenin and oleanolic acid of whose highest amount was detected in washnut (999.1 ± 6.3 µg/g and 386.5 ± 27.7 µg/g, respectively) were subject to another approach. Consequently, liquid chromatography coupled mass spectrometry (LC/MS) with multiple reaction monitoring mode (MRM) was used as an additional technique for fast and simultaneous identification of the mentioned targets.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7242
Author(s):  
Hongmei Sun ◽  
Yini Cai ◽  
Jie Shen ◽  
Enyao Ma ◽  
Zhimin Zhao ◽  
...  

A method based on high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for the quantitative analysis of three active compounds and chemical fingerprint analyses of saccharides in Morindae officinalis radix. Ten batches of Morindae officinalis radix were collected from different plantations in the Guangdong region of China and used to establish the fingerprint. The samples were separated with a COSMOIL Sugar-D column (4.6 mm × 250 mm, 5 μm) by using gradient elution with water (A) and acetonitrile (B). In addition, Trapped-Ion-Mobility (tims) Time-Of-Flight (tims TOF) was used to identify saccharides of Morindae officinalis radix. Fingerprint chromatogram presented 26 common characteristic peaks in the roots of Morinda officinalis How, and the similarities were more than 0.926. In quantitative analysis, the three compounds showed good regression (r = 0.9995–0.9998) within the test ranges, and the recoveries of the method were in the range of 96.7–101.7%. The contents of sucrose, kestose and nystose in all samples were determined as 1.21–7.92%, 1.02–3.37%, and 2.38–6.55%, respectively. The developed HPLC fingerprint method is reliable and was validated for the quality control and identification of Morindae officinalis radix and can be successfully used to assess the quality of Morindae officinalis radix.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 489
Author(s):  
Kiran Ali ◽  
Arslan Ali ◽  
Muhammad Noman Khan ◽  
Saeedur Rahman ◽  
Shaheen Faizi ◽  
...  

The discovery and identification of novel natural products of medicinal importance in the herbal medicine industry becomes a challenge. The complexity of this process can be reduced by dereplication strategies. The current study includes a method based on high-performance liquid chromatography (HPLC), using the evaporative light scattering detector (ELSD) to identify the 12 most common secondary metabolites in plant extracts. Twelve compounds including rutin, taxifolin, quercetin, apigenin, kaempferol, betulinic acid, oleanolic acid, betulin, lupeol, stigmasterol, and β-sitosterol were analyzed simultaneously. The polarity of the compounds varied greatly from highly polar (flavonoids) to non-polar (triterpenes and sterols). This method was also tested for HPLC-DAD and HPLC-ESI-MS/MS analysis. Oleanolic acid and ursolic acid could not be separated in HPLC-ELSD analysis but were differentiated using LC-ESI-MS/MS analysis due to different fragment ions. The regression values (R2 > 0.996) showed good linearity in the range of 50–1000 µg/mL for all compounds. The range of LOD and LOQ values were 7.76–38.30 µg/mL and 23.52–116.06 µg/mL, respectively. %RSD and % trueness values of inter and intraday studies were mostly <10%. This method was applied on 10 species of medicinal plants. The dereplication strategy has the potential to facilitate and shorten the identification process of common secondary metabolites in complex plant extracts.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4505
Author(s):  
Jiahui Sun ◽  
Chunli Gan ◽  
Jing Huang ◽  
Zhenyue Wang ◽  
Chengcui Wu ◽  
...  

A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L.


2021 ◽  
Vol 11 (9) ◽  
pp. 3808
Author(s):  
Heidi Meriö-Talvio ◽  
Jinze Dou ◽  
Tapani Vuorinen ◽  
Leena Pitkänen

Willow bark water extracts contain a mixture of chemically heterogeneous compounds. Fast screening techniques of the extracts are often needed to obtain information on the profile of bioactive and/or other valuable components in the extract. This is, however, a challenging task due to the different chemical structures of the components. Willow bark extract from the hybrid Karin contains several bioactive compounds such as aromatic picein, triandrin, and (+)-catechin. Willow bark extract also contains significant amounts of the monosaccharides fructose and glucose. Here, we demonstrate the applicability of hydrophilic interaction liquid chromatography, coupled with evaporative light scattering and ultraviolet detectors, for the simultaneous separation and quantification of major aromatic compounds and monosaccharides from the willow bark extract. The ternary eluent mixture consisting of acetonitrile, water, and methanol enabled the baseline separation of the main components in the extract in a short analysis time, which makes this method ideal for fast screening of the plant extracts and investigating the purity of fractionated bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document