Scheduling non-identical parallel batch processing machines to minimize total weighted tardiness using particle swarm optimization

2017 ◽  
Vol 113 ◽  
pp. 425-436 ◽  
Author(s):  
Maria Hulett ◽  
Purushothaman Damodaran ◽  
Mahbod Amouie
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Tarik Cakar ◽  
Rasit Koker

A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem (SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools, neurodominance rule (NDR) has been used to improve performance of last solution of hybrid-PSO system. NDR checked sequential jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2033
Author(s):  
Raegeun Oh ◽  
Yifang Shi ◽  
Jee Woong Choi

Bearing-only target motion analysis (BO-TMA) by batch processing remains a challenge due to the lack of information on underwater target maneuvering and the nonlinearity of sensor measurements. Traditional batch estimation for BO-TMA is mainly performed based on deterministic algorithms, and studies performed with heuristic algorithms have recently been reported. However, since the two algorithms have their own advantages and disadvantages, interest in a hybrid method that complements the disadvantages and combines the advantages of the two algorithms is increasing. In this study, we proposed Newton–Raphson particle swarm optimization (NRPSO): a hybrid method that combines the Newton–Raphson method and the particle swarm optimization method, which are representative methods that utilize deterministic and heuristic algorithms, respectively. The BO-TMA performance obtained using the proposed NRPSO was tested by varying the measurement noise and number of measurements for three targets with different maneuvers. The results showed that the advantages of both methods were well combined, which improved the performance.


Sign in / Sign up

Export Citation Format

Share Document