target motion analysis
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 21)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lakshmi M. Kavitha ◽  
Rao S. Koteswara ◽  
K. Subrahmanyam

Purpose Marine exploration is becoming an important element of pervasive computing underwater target tracking. Many pervasive techniques are found in current literature, but only scant research has been conducted on their effectiveness in target tracking. Design/methodology/approach This research paper, introduces a Shifted Rayleigh Filter (SHRF) for three-dimensional (3 D) underwater target tracking. A comparison is drawn between the SHRF and previously proven method Unscented Kalman Filter (UKF). Findings SHRF is especially suitable for long-range scenarios to track a target with less solution convergence compared to UKF. In this analysis, the problem of determining the target location and speed from noise corrupted measurements of bearing, elevation by a single moving target is considered. SHRF is generated and its performance is evaluated for the target motion analysis approach. Originality/value The proposed filter performs better than UKF, especially for long-range scenarios. Experimental results from Monte Carlo are provided using MATLAB and the enhancements achieved by the SHRF techniques are evident.


2021 ◽  
Author(s):  
saber kaviani ◽  
Fereidoon Behnia

This paper proposes a method for the three-dimensional localization of an active aerial target by a single ground based sensor. The proposed method employs the time and frequency differences of arrival of the signal received directly from the aerial target and the signals received after being reflected from some large auxiliary terrestrial targets (pseudo-sensors) with known positions on the ground. Due to the terrestrial nature of the main and the pseudo sensors, it is impossible to solve for the target's altitude using traditional methods. The proposed method employs target motion analysis to obtain target position including its altitude with acceptable accuracy and low computational complexity. Presented simulations confirm acceptable accuracy of the proposed method in determining three dimensional position of the target despite limited number of the pseudo sensors and its low computational complexity.


2021 ◽  
Author(s):  
saber kaviani ◽  
Fereidoon Behnia

This paper proposes a method for the three-dimensional localization of an active aerial target by a single ground based sensor. The proposed method employs the time and frequency differences of arrival of the signal received directly from the aerial target and the signals received after being reflected from some large auxiliary terrestrial targets (pseudo-sensors) with known positions on the ground. Due to the terrestrial nature of the main and the pseudo sensors, it is impossible to solve for the target's altitude using traditional methods. The proposed method employs target motion analysis to obtain target position including its altitude with acceptable accuracy and low computational complexity. Presented simulations confirm acceptable accuracy of the proposed method in determining three dimensional position of the target despite limited number of the pseudo sensors and its low computational complexity.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2033
Author(s):  
Raegeun Oh ◽  
Yifang Shi ◽  
Jee Woong Choi

Bearing-only target motion analysis (BO-TMA) by batch processing remains a challenge due to the lack of information on underwater target maneuvering and the nonlinearity of sensor measurements. Traditional batch estimation for BO-TMA is mainly performed based on deterministic algorithms, and studies performed with heuristic algorithms have recently been reported. However, since the two algorithms have their own advantages and disadvantages, interest in a hybrid method that complements the disadvantages and combines the advantages of the two algorithms is increasing. In this study, we proposed Newton–Raphson particle swarm optimization (NRPSO): a hybrid method that combines the Newton–Raphson method and the particle swarm optimization method, which are representative methods that utilize deterministic and heuristic algorithms, respectively. The BO-TMA performance obtained using the proposed NRPSO was tested by varying the measurement noise and number of measurements for three targets with different maneuvers. The results showed that the advantages of both methods were well combined, which improved the performance.


2020 ◽  
Vol 21 (1) ◽  
pp. 123-133
Author(s):  
Jonathan Gordon ◽  
Douglas Gillespie ◽  
Russell Leaper ◽  
Arthur Lee ◽  
Lindsay Porter ◽  
...  

Previous studies off western Ireland have suggested that substantial numbers of, mainly male, sperm whales may be found in these habitats. Whaling vessels operating from shore stations in Ireland in the early 20th century frequently caught sperm whales in oceanic waters. It is likely that this North Atlantic region contains important foraging habitats for this species, and that mature males must also migrate through this area moving between breeding grounds to the south and other feeding areas further north. Increasingly, these offshore waters are being utilised and potentially impacted by human industrial activities. For example, as inshore resources are depleted and technology improves, both the commercial fishing and the oil and gas industry are becoming more active in deeper waters beyond the continental margin. It is important therefore to better understand the biology and ecology of sperm whales in these more remote areas. However, their offshore location and deep diving habits, together with weather constraints in the exposed Atlantic, make research difficult. New sperm whale density estimates are reported using data from six seasonal passiveacoustic surveys carried out in two successive years (2015 and 2016). These covered a corridor approximately 110km wide which bounded a major portion of Ireland’s continental shelf break. Towed hydrophone line-transect methodologies were used, which have proven to be highly effective for surveying sperm whales in offshore waters and in poor weather conditions. Target motion analysis was applied to calculate the ranges of vocalising whales from the survey tracklines and the effective strip half-width calculated across all surveys was 7,958m. The study area was surveyedin three blocks and animal densities within these blocks varied between 1 and 4.6 individuals per 1,000km2 (CV 0.34 and 0.21 respectively) with an overall mean density in waters deeper than 300m of 3.2 individuals per 1,000km2(CV 0.04). These robust density estimates are the first of their kind for Irish waters and are similar to those reported in other Atlantic areas considered significant for this species. These results emphasise the significance of this region as sperm whale habitat. The results of this study should be used to inform the future sustainable development and management of Ireland’s offshore Atlantic.


Sign in / Sign up

Export Citation Format

Share Document