Green scheduling optimization of ship plane block flow line considering carbon emission and noise

2020 ◽  
Vol 148 ◽  
pp. 106680
Author(s):  
Hui Guo ◽  
Jinghua Li ◽  
Boxin Yang ◽  
Xuezhang Mao ◽  
Qinghua Zhou
2014 ◽  
Vol 685 ◽  
pp. 630-633
Author(s):  
Fang Guo He

The scheduling optimization of the flow line is a core of modern managing technology and Data Processing. The goal of the problem is to minimize the sum of the total flow time. Aiming at machine scheduling of production process, this paper presents a genetic algorithm based heuristic for the problem. An encoding method based working procedure and parthenogenetic operations are applied to solve the flow line scheduling problem. The computational results indicate that the proposed approach is effective in terms of reduced makespan for the attempted problems.


Author(s):  
Yuting Wu ◽  
Ling Wang ◽  
Jing-fang Chen

AbstractUnder the current volatile business environment, the requirement of flexible production is becoming increasingly urgent. As an innovative production mode, seru-system with reconfigurability can overcome the lack of flexibility in traditional flow lines. Compared with pure seru-system, the hybrid seru-system composed of both serus and production lines is more practical for adapting to many production processes. This paper addresses a specific hybrid seru-system scheduling optimization problem (HSSOP), which includes three strongly coupled sub-problems, i.e., hybrid seru formation, seru scheduling and flow line scheduling. To minimize the makespan of the whole hybrid seru-system, we propose an efficient cooperative coevolution algorithm (CCA). To tackle three sub-problems, specific sub-algorithms are designed based on the characteristic of each sub-problem, i.e., a sub-space exploitation algorithm for hybrid seru formation, an estimation of distribution algorithm for seru scheduling, and a first-arrive-first-process heuristic for flow line scheduling. Since three sub-problems are coupled, a cooperation coevolution mechanism is proposed for the integrated algorithm by information sharing. Moreover, a batch reassign rule is designed to overcome the mismatch of partial solutions during cooperative coevolution. To enhance the exploitation ability, problem-specific local search methods are designed and embedded in the CCA. In addition to the investigation about the effect of parameter setting, extensive computational tests and comparisons are carried out which demonstrate the effectiveness and efficiency of the CCA in solving the HSSOP.


2021 ◽  
Vol 16 (7) ◽  
pp. 2554-2570
Author(s):  
Weixin Wang ◽  
Shizhen Wang ◽  
Jiafu Su

Carbon emission constraints and trading policies in e-commerce environments have brought huge challenges to the operation of supply chain enterprises. In order to ensure the good operation of the e-commerce supply chain in a low-carbon environment, a supply chain scheduling optimization method based on integration of production and transportation with carbon emission constraints is proposed; we use it to analyze the impact of centralized decision-making mode and decentralized decision-making mode on supply chain scheduling and establish a scheduling optimization model that aims at optimal carbon emissions and costs. A multilevel genetic algorithm was designed according to the characteristics of the model, and numerical examples are used to verify the effectiveness of the model and algorithm. The results show that the centralized decision-making mode plays the role of the carbon emission constraints to the greatest extent; the carbon emissions and the cost are smallest in the centralized decision-making mode. The decentralized decision-making mode leads to the overall cost preference of the supply chain due to separate decisions made by enterprises, and the carbon emissions in the supply chain are greater. Transportation experts, business managers and government departments are interesting for integrated production and transportation scheduling in e-commerce supply chain with carbon emission constraints. Further research should address integrated production and transportation scheduling in dual-channel low supply chains.


2020 ◽  
Vol 7 (1) ◽  
pp. 99
Author(s):  
Yong Adilah Shamsul Harumain ◽  
Nur Farhana Azmi ◽  
Suhaini Yusoff

Transit stations are generally well known as nodes of spaces where percentage of people walking are relatively high. The issue is do more planning is actually given to create walkability. Creating walking led transit stations involves planning of walking distance, providing facilities like pathways, toilets, seating and lighting. On the other hand, creating walking led transit station for women uncover a new epitome. Walking becomes one of the most important forms of mobility for women in developing countries nowadays. Encouraging women to use public transportation is not just about another effort to promote the use of public transportation but also another great endeavour to reduce numbers of traffic on the road. This also means, creating an effort to control accidents rate, reducing carbon emission, improving health and eventually, developing the quality of life. Hence, in this paper, we sought first to find out the factors that motivate women to walk at transit stations in Malaysia. A questionnaire survey with 562 female user of Light Railway Transit (LRT) was conducted at LRT stations along Kelana Jaya Line. Both built and non-built environment characteristics, particularly distance, safety and facilities were found as factors that are consistently associated with women walkability. With these findings, the paper highlights the criteria  which are needed to create and make betterment of transit stations not just for women but also for walkability in general.


Sign in / Sign up

Export Citation Format

Share Document