Multi-Objective Multi-Skill Resource-Constrained Project Scheduling Problem with skill switches: Model and Evolutionary Approaches

2021 ◽  
pp. 107897
Author(s):  
Yuan Tian ◽  
Tifan Xiong ◽  
Zhenyuan Liu ◽  
Yi Mei ◽  
Li Wan
Computing ◽  
2019 ◽  
Vol 101 (6) ◽  
pp. 547-570 ◽  
Author(s):  
Erfan Babaee Tirkolaee ◽  
Alireza Goli ◽  
Milad Hematian ◽  
Arun Kumar Sangaiah ◽  
Tao Han

Author(s):  
Amirhossein Hosseinian ◽  
Vahid Baradaran

This paper addresses the Multi-Skill Resource-Constrained Project Scheduling Problem with Transfer Times (MSRCPSP-TT). A new model has been developed that incorporates the presence of transfer times within the multi-skill RCPSP. The proposed model aims to minimize project’s duration and cost, concurrently. The MSRCPSP-TT is an NP-hard problem; therefore, a Multi-Objective Multi-Agent Optimization Algorithm (MOMAOA) is proposed to acquire feasible schedules. In the proposed algorithm, each agent represents a feasible solution that works with other agents in a grouped environment. The agents evolve due to their social, autonomous, and self-learning behaviors. Moreover, the adjustment of environment helps the evolution of agents as well. Since the MSRCPSP-TT is a multi-objective optimization problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used in different procedures of the MOMAOA. Another novelty of this paper is the application of TOPSIS in different procedures of the MOMAOA. These procedures are utilized for: (1) detecting the leader agent in each group, (2) detecting the global best leader agent, and (3) the global social behavior of the MOMAOA. The performance of the MOMAOA has been analyzed by solving several benchmark problems. The results of the MOMAOA have been validated through comparisons with three other meta-heuristics. The parameters of algorithms are determined by the Response Surface Methodology (RSM). The Kruskal-Wallis test is implemented to statistically analyze the efficiency of methods. Computational results reveal that the MOMAOA can beat the other three methods according to several testing metrics. Furthermore, the impact of transfer times on project’s duration and cost has been assessed. The investigations indicate that resource transfer times have significant impact on both objectives of the proposed model


2011 ◽  
Vol 1 (6) ◽  
pp. 144-150
Author(s):  
B. O. Odedairo ◽  
V. Oladokun

Resource-Constrained Project Scheduling Problem (RCPSP) is a Non Polynomial (NP) - Hard optimization problem that considers how to assign activities to available resources in order to meet predefined objectives. The problem is usually characterized by precedence relationship between activities with limited capacity of renewable resources. In an environment where resources are limited, projects still have to be finished on time, within the approved budget and in accordance with the preset specifications. Inherently, these tend to make RCPSP, a multi-objective problem. However, it has been treated as a single objective problem with project makespan often recognized as the most relevant objective. As a result of not understanding the multi-objective dimension of some projects, where these objectives need to be simultaneously considered, distraction and conflict of interest have ultimately lead to abandoned or totally failed projects. The aim of this article is to holistically review the relevance and applicability of multi-objective performance dimension of RCPSP in an environment where optimal use of limited resources is important.


Sign in / Sign up

Export Citation Format

Share Document