Comparison of the spatiotemporal mobility patterns among typical subgroups of the actual population with mobile phone data: A case study of Beijing

Cities ◽  
2020 ◽  
Vol 100 ◽  
pp. 102670 ◽  
Author(s):  
Yimin Wu ◽  
Liang Wang ◽  
Linghui Fan ◽  
Ming Yang ◽  
Yu Zhang ◽  
...  
Author(s):  
Harald Sterly ◽  
Benjamin Etzold ◽  
Lars Wirkus ◽  
Patrick Sakdapolrak ◽  
Jacob Schewe ◽  
...  

2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


2021 ◽  
Author(s):  
Alex A Berke ◽  
Ronan Doorley ◽  
Luis Alonso ◽  
Marc Pons ◽  
Vanesa Arroyo ◽  
...  

Compartmental models are often used to understand and predict the progression of an infectious disease such as COVID-19. The most basic of these models consider the total population of a region to be closed. Many incorporate human mobility into their transmission dynamics, usually based on static and aggregated data. However, mobility can change dramatically during a global pandemic as seen with COVID-19, making static data unsuitable. Recently, large mobility datasets derived from mobile devices have been used, along with COVID-19 infections data, to better understand the relationship between mobility and COVID-19. However, studies to date have relied on data that represent only a fraction of their target populations, and the data from mobile devices have been used for measuring mobility within the study region, without considering changes to the population as people enter and leave the region. This work presents a unique case study in Andorra, with comprehensive datasets that include telecoms data covering 100% of mobile subscribers in the country, and results from a serology testing program that more than 90% of the population voluntarily participated in. We use the telecoms data to both measure mobility within the country and to provide a real-time census of people entering, leaving and remaining in the country. We develop multiple SEIR (compartmental) models parameterized on these metrics and show how dynamic population metrics can improve the models. We find that total daily trips did not have predictive value in the SEIR models while country entrances did. As a secondary contribution of this work, we show how Andorra's serology testing program was likely impacted by people leaving the country. Overall, this case study suggests how using mobile phone data to measure dynamic population changes could improve studies that rely on more commonly used mobility metrics and the overall understanding of a pandemic.


Sign in / Sign up

Export Citation Format

Share Document