Minimising non-selective defects in ultrathin reduced graphene oxide membranes with graphene quantum dots for enhanced water and NaCl separation

Author(s):  
Shi Yuan ◽  
Yang Li ◽  
Ruosang Qiu ◽  
Yun Xia ◽  
Cordelia Selomulya ◽  
...  
Author(s):  
Zhaolong Chen ◽  
Kou Yang ◽  
Tongfeng Xian ◽  
Coskun Kocabas ◽  
Sergei V. Morozov ◽  
...  

ACS Omega ◽  
2017 ◽  
Vol 2 (10) ◽  
pp. 7293-7298 ◽  
Author(s):  
Jiali Zhang ◽  
Fangwei Zhang ◽  
Yaoyao Yang ◽  
Shouwu Guo ◽  
Jingyan Zhang

2016 ◽  
Vol 40 (11) ◽  
pp. 9111-9124 ◽  
Author(s):  
A. Muthurasu ◽  
P. Dhandapani ◽  
V. Ganesh

A simple and facile method for the simultaneous preparation of graphene quantum dots (GQDs) having different emission colours, viz., yellow, green and blue, and reduced graphene oxide (RGO) utilized respectively for bio-imaging and supercapacitor applications is demonstrated.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 70012-70017 ◽  
Author(s):  
A. Alhadhrami ◽  
S. Salgado ◽  
V. Maheshwari

Inter-layer spacing in reduced graphene-oxide membranes which modulates their ion-diffusion electrical and electrochemical characteristics is controlled by temperature of thermal reduction.


2019 ◽  
Vol 572 ◽  
pp. 12-19 ◽  
Author(s):  
Hsin-Hui Huang ◽  
Rakesh K. Joshi ◽  
K. Kanishka H. De Silva ◽  
Rajashekar Badam ◽  
Masamichi Yoshimura

ACS Omega ◽  
2020 ◽  
Vol 5 (34) ◽  
pp. 21345-21354
Author(s):  
Esraa Hamdy ◽  
Laila Saad ◽  
Fuad Abulfotuh ◽  
Moataz Soliman ◽  
Shaker Ebrahim

Carbon ◽  
2020 ◽  
Vol 162 ◽  
pp. 318-327 ◽  
Author(s):  
Rumwald Leo G. Lecaros ◽  
Ma. Elizabeth Bismonte ◽  
Bonifacio T. Doma ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

2019 ◽  
Vol 948 ◽  
pp. 267-273 ◽  
Author(s):  
Fiqhri Heda Murdaka ◽  
Ahmad Kusumaatmaja ◽  
Isnaeni ◽  
Iman Santoso

We report the synthesize of Graphene Quantum Dots (GQDs) using ablation method with reduced Graphene Oxide (rGO) solution as a starting material. We have varied the concentration of rGO as following: 0.5, 2, 5 mg/ml and then have ablated them using 800 nm Ti-Sapphire femtosecond laser to obtain GQDs. From the UV-Vis data, we observed that the more concentration of rGO is being ablated, the more secondary absorption peak at 255.1 nm appeared. This secondary absorption peak is a characteristic of n-π* bonding due to the presence of oxygen defect which occurs as a result of the interaction between the laser and the water in rGO solution. We conclude that the population of oxigen defect in GQDs is increasing, following the increase of rGO concentration and could alter the optical properties of GQD. On the other hand, using Tauc’s plot, we confirm that the increase of rGO concentration as the ablated material does not alter GQDs optical band gap. However, it will slightly reduce both, direct and indirect Oxygen defect related optical band gap.


2020 ◽  
Vol 241 ◽  
pp. 116730 ◽  
Author(s):  
Xiaotao Fan ◽  
Caibin Cai ◽  
Jian Gao ◽  
Xiaolong Han ◽  
Jiding Li

Sign in / Sign up

Export Citation Format

Share Document