A new approach for seeking coefficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation

2018 ◽  
Vol 56 (6) ◽  
pp. 2817-2828 ◽  
Author(s):  
Qinghua Feng
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Based on a nonlinear fractional complex transformation, the Jacobi elliptic equation method is extended to seek exact solutions for fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. For demonstrating the validity of this method, we apply it to solve the space fractional coupled Konopelchenko-Dubrovsky (KD) equations and the space-time fractional Fokas equation. As a result, some exact solutions for them including the hyperbolic function solutions, trigonometric function solutions, rational function solutions, and Jacobi elliptic function solutions are successfully found.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Fanwei Meng

We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained. This approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by S. Zhang and H.-Q. Zhang (2011).


Author(s):  
Waleed Adel ◽  
Kumbinarasaiah Srinivasa

Abstract This paper generates a novel approach called the clique polynomial method (CPM) using the clique polynomials raised in graph theory and used for solving the fractional order PDE. The fractional derivative is defined in terms of the Caputo fractional sense and the fractional partial differential equations (FPDE) are converted into nonlinear algebraic equations and collocated with suitable grid points in the current approach. The convergence analysis for the proposed scheme is constructed and the technique proved to be uniformly convegant. We applied the method for solving four problems to justify the proposed technique. Tables and graphs reveal that this new approach yield better results. Some theorems are discussed with proof.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Di Xu ◽  
Fanwei Meng

Abstract In this article, we regard the generalized Riccati transformation and Riemann–Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document