scholarly journals A New Approach for Solving Fractional Partial Differential Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Fanwei Meng

We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained. This approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by S. Zhang and H.-Q. Zhang (2011).

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng

We apply the method to seek exact solutions for several fractional partial differential equations including the space-time fractional (2 + 1)-dimensional dispersive long wave equations, the (2 + 1)-dimensional space-time fractional Nizhnik-Novikov-Veselov system, and the time fractional fifth-order Sawada-Kotera equation. The fractional derivative is defined in the sense of modified Riemann-liouville derivative. Based on a certain variable transformation, these fractional partial differential equations are transformed into ordinary differential equations of integer order. With the aid of mathematical software, a variety of exact solutions for them are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Zheng

We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


2015 ◽  
Vol 19 (4) ◽  
pp. 1173-1176 ◽  
Author(s):  
Lian-Xiang Cui ◽  
Li-Mei Yan ◽  
Yan-Qin Liu

An improved extended tg-function method, which combines the fractional complex transform and the extended tanh-function method, is applied to find exact solutions of non-linear fractional partial differential equations. Generalized Hirota-Satsuma coupled Korteweg-de Vries equations are used as an example to elucidate the effectiveness and simplicity of the method.


Author(s):  
Matteo Petrera ◽  
Mats Vermeeren

Abstract We investigate the relation between pluri-Lagrangian hierarchies of 2-dimensional partial differential equations and their variational symmetries. The aim is to generalize to the case of partial differential equations the recent findings in Petrera and Suris (Nonlinear Math. Phys. 24(suppl. 1):121–145, 2017) for ordinary differential equations. We consider hierarchies of 2-dimensional Lagrangian PDEs (many of which have a natural $$(1\,{+}\,1)$$ ( 1 + 1 ) -dimensional space-time interpretation) and show that if the flow of each PDE is a variational symmetry of all others, then there exists a pluri-Lagrangian 2-form for the hierarchy. The corresponding multi-time Euler–Lagrange equations coincide with the original system supplied with commuting evolutionary flows induced by the variational symmetries.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the improved fractional subequation method is applied to establish the exact solutions for some nonlinear fractional partial differential equations. Solutions to the generalized time fractional biological population model, the generalized time fractional compound KdV-Burgers equation, the space-time fractional regularized long-wave equation, and the (3+1)-space-time fractional Zakharov-Kuznetsov equation are obtained, respectively.


2019 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Dipankar Kumar ◽  
Samir Chandra Ray

This paper investigates the new exact solutions of the three nonlinear time fractional partial differential equations namely the nonlinear time fractional Clannish Random Walker’s Parabolic (CRWP) equation, the nonlinear time fractional modified Kawahara equation, and the nonlinear time fractional BBM-Burger equation by utilizing an extended form of exp(-φ(ξ))-expansion method in the sense of conformable fractional derivative. As outcomes, some new exact solutions are obtained and signified by hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Some solutions have been plotted by MATLAB software to show the physical significance of our studied equations. In the point of view of our executed method and generated results, we may conclude that extended exp (-φ(ξ))-expansion method is more efficient than exp(-φ(ξ))-expansion method to extract the new exact solutions for solving any types of integer and fractional differential equations arising in mathematical physics.   


2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0786 ◽  
Author(s):  
Enadi Et al.

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.        Finally, all algorithms in this paper are implemented in MATLAB version 7.12.


Sign in / Sign up

Export Citation Format

Share Document