Modeling and analytical solution of free energy of complex promoter structure

2021 ◽  
Vol 71 ◽  
pp. 151-158
Author(s):  
Lifang Huang ◽  
Peijiang Liu ◽  
Kunwen Wen
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lifang Huang ◽  
Peijiang Liu ◽  
Kunwen Wen ◽  
Jianshe Yu

From the viewpoint of thermodynamics, gene transcription necessarily consumes free energy due to nonequilibrium processes. On the other hand, regulatory molecules present on the core promoter of a gene interact often in a dynamic, highly combinatorial, and possibly energy-dependent manner, leading to a complex promoter structure. This raises the question of how gene transcription with general promoter topology consumes free energy. We propose a biophysically intuitive approach to calculate energy consumption (quantified by the production rate of entropy) of a gene transcription process. Then, we show that the numbers of the ON and OFF states of a promoter can reduce energy consumption of the gene system and the Fano factor of mRNA, and in contrast to other regulatory ways, the cooperative binding of transcription factors to DNA sites always reduces energy consumption but amplifies the mRNA noise. While our proposed approach is general, our obtained qualitative results can in turn be used to the inference of complex promoter structure.


2020 ◽  
Vol 43 ◽  
Author(s):  
Robert Mirski ◽  
Mark H. Bickhard ◽  
David Eck ◽  
Arkadiusz Gut

Abstract There are serious theoretical problems with the free-energy principle model, which are shown in the current article. We discuss the proposed model's inability to account for culturally emergent normativities, and point out the foundational issues that we claim this inability stems from.


1987 ◽  
Vol 48 (2) ◽  
pp. 169-171 ◽  
Author(s):  
G. Aubert ◽  
E. du Tremolet de Lacheisserie
Keyword(s):  

1989 ◽  
Vol 50 (24) ◽  
pp. 3527-3534 ◽  
Author(s):  
P. Oswald ◽  
F. Melo ◽  
C. Germain

Sign in / Sign up

Export Citation Format

Share Document