Novel solitary and shock wave solutions for the generalized variable-coefficients (2+1)-dimensional KP-Burger equation arising in dusty plasma

2021 ◽  
Vol 71 ◽  
pp. 341-350
Author(s):  
Rehab M. El-Shiekh
2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


Author(s):  
Rehab M. El-Shiekh ◽  
Mahmoud Gaballah

AbstractIn this paper, the generalized nonlinear Schrödinger equation with variable coefficients (gvcNLSE) arising in optical fiber is solved by using two different techniques the trail equation method and direct integration method. Many different new types of wave solutions like Jacobi, periodic and soliton wave solutions are obtained. From this study we have concluded that the direct integration method is more easy and straightforward than the trail equation method. As an application in optic fibers the propagation of the frequency modulated optical soliton is discussed and we have deduced that it's propagation shape is affected with the different values of both the amplification increment and the group velocity (GVD).


2011 ◽  
Author(s):  
H. Bailung ◽  
S. K. Sharma ◽  
N. Bhagoboty ◽  
Y. Nakamura ◽  
Vladimir Yu. Nosenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document