Biomechanics of the posterior oblique ligament of the knee

2020 ◽  
Vol 80 ◽  
pp. 105205
Author(s):  
Riccardo D'Ambrosi ◽  
Katia Corona ◽  
Germano Guerra ◽  
Maurizio Rubino ◽  
Fabrizio Di Feo ◽  
...  
Author(s):  
Shinichi Kuriyama ◽  
Yosuke Hamamoto ◽  
Ryuzo Arai ◽  
Shinichiro Nakamura ◽  
Kohei Nishitani ◽  
...  

2019 ◽  
Vol 6 (6) ◽  
Author(s):  
José Aderval Aragão ◽  
Julia Dória Fontes ◽  
Iapunira Catarina Sant’ Anna Aragão ◽  
Felipe Matheus Sant’ Anna Aragão ◽  
Francisco Prado Reis

2021 ◽  
Vol 6 (5) ◽  
pp. 364-371
Author(s):  
Riccardo D’Ambrosi ◽  
Katia Corona ◽  
Germano Guerra ◽  
Simone Cerciello ◽  
Chiara Ursino ◽  
...  

The posterior oblique ligament (POL) is the predominant ligamentous structure on the posterior medial corner of the knee joint. A thorough understanding of the anatomy, biomechanics, diagnosis, treatment and rehabilitation of POL injuries will aid orthopaedic surgeons in the management of these injuries. The resulting rotational instability, in addition to valgus laxity, may not be tolerated by athletes participating in pivoting sports. The most common mechanism of injury – accounting for 72% of cases – is related to sports activity, particularly football, basketball and skiing. Moreover, three different injury patterns have been reported: those associated with injury to the capsular arm of the semimembranosus (SM), those involving a complete peripheral meniscal detachment and those involving disruption of the SM and peripheral meniscal detachment. The hallmark of an injury related to POL lesions is the presence of anteromedial rotatory instability (AMRI), which is defined as ‘external rotation with anterior subluxation of the medial tibial plateau relative to the distal femur’. In acute settings, POL lesions can be easily identified using coronal and axial magnetic resonance imaging (MRI) where the medial collateral ligament (MCL) and POL appear as separate structures. However, MRI is not sensitive in chronic cases. Surgical treatment of the medial side leads to satisfactory clinical results in a multi-ligamentous reconstruction scenario, but it is known to be associated with secondary stiffness. In young patients with high functional demands, return to sports is allowed no earlier than 9–12 months after they have undergone a thorough rehabilitation programme. Cite this article: EFORT Open Rev 2021;6:364-371. DOI: 10.1302/2058-5241.6.200127


2014 ◽  
Vol 2 (12_suppl4) ◽  
pp. 2325967114S0025
Author(s):  
Pablo E. Gelber ◽  
Àngel Masferrer ◽  
Juan I. Erquicia ◽  
Ferran Abat ◽  
Xavier Pelfort ◽  
...  

Introduction: The surface medial collateral ligament (LCMs) and the posterior oblique ligament (POL) are sometimes concomitantly reconstructed with the posterior cruciate ligament (PCL). The objective was to determine the most appropriate angle of the femoral tunnel. Material and Methods: 8 cadaveric knees. Bifascicular LCP tunneling performed arthroscopically. Tunnels LCMs and LOP at 0 ° and 30 ° in axial / coronal planes (0A / 30A // 0C / 0C). Were studied by CT and valued intercondylar relationship, PCL ,and tunnels. A 25mm tunnel was the least considered sufficient Results: The LCMs tunnels 30A / 30C and 30A / 0C measured 31.8 ± 3.2 and 32.2 ± 2.8 mm, respectively, without encroaching on the LCP and 17.4 ± 4 and 17.67 ± 3.8mm intercondylar ceiling. The LCMs 0A / 0C and 0A / 30C tunnels were 5.8 ± 5.2 and 7.2 ± 4.7 of intercondilo respectively, without invasion of the PCL. The LCMs tunnels 0A / 30C in 4 cases ended intraarticulararmente. The LOP 30A / 0C and 30A / 30C measured 33 ± 2.7 and 32.3 ± 3mm, without invasion of the PCL and 16.2 ± 5.7 and 19.3 ± 4.6mm of intercondilo. The LOP 0A / 0C and 0A / 30C tunnels were 6.50 ± 3.9 and 2.9 ± 5.3mm of intercondilo. The LOP tunneled 0A / 30C invaded in 3 cases the PCL tunnels and ended intraarticularly on 7 occasions. Conclusions: The angulation of the femoral tunnels LCMs and POL have versatility although the LCP is rebuild concomitantly. LCMs tunnels and POL axially oriented at 0° and 30° in coronal planes have high risk of puncturing the joint and in the case of POL also invade LCP tunnels.


2016 ◽  
Vol 7 (2) ◽  
pp. 107-111
Author(s):  
Shilpa Gosavi ◽  
Rajendra Garud ◽  
Surekha Jadhav

Los libros de texto comunes de anatomía describen dos protuberancias óseas presentes en el cóndilo medial del fémur. A parte del tubérculo aductor (TA) y del epicóndilo medial (EPM) del fémur también se ha observado una tercera protuberancia ósea en muchos huesos. En la literatura publicada previamente se lo denomina tubérculo gastrocnemio. La cabeza medial del músculo gastrocnemio y el ligamento oblicuo posterior están adheridos al mismo. Hemos observado 396 (derecha-204 e izquierda-192) fémures secos de pacientes indios. Se observó la presencia en el cóndilo medial de la tercera protuberancia ósea, es decir, el tubérculo gastrocnemio (TGC) junto con el tubérculo aductor y el epicóndilo medial. Se advirtió la presencia o ausencia de TGC. Se comparó el tamaño del TGC y del TA. Se midió la distancia entre TA y TGC y se midió asimismo la distancia entre TGC y EPM utilizando un calibre vernier digital con un grado de precisión de hasta 0,01 mm. Para la elaboración de datos se calculó el porcentaje, la distancia media, el rango y la desviación estándar. Se comprobó la presencia de TGC en 207 huesos, es decir 52,27% (derecha-109 e izquierda-98). En la mayoría de los fémures (80,7%) el TA es de tamaño mayor que el TGC. La distancia media entre TGC y TA en el lado derecho es 10,8 ± 2,4 mm y en el lado izquierdo es 10,9 ± 2,3.  Se observó una distancia entre TGC y EPM de 14,8 ± 0,5 mm en el lado derecho y de 14,9 ± 2.9 mm en el lado izquierdo. Las diferencias bilaterales no son significativas en términos estadísticos. Es importante para los clínicos identificar el TGC para evitar la reparación no anatómica de lesiones del ligamento medial de la rodilla. The standard textbooks of anatomy describe two bony prominences on the medial condyle of femur. In addition to adductor tubercle (AT) and medial epicondyle (MEP) of femur a third bony prominence was also observed in many bones. In previously published literature it was named as gastrocnemius tubercle. The medial head of gastrocnemius muscle and posterior oblique ligament were attached close to it. We observed three hundred and ninety six (right-204 and left-192) dry femora belonging to Indian population. The medial condyle was observed for the presence of third bony prominence - gastrocnemius tubercle (GCT) along with adductor tubercle and medial epicondyle. The presence or absence of GCT was noted. The size of GCT and AT was compared. The distance between the most prominent point on AT and GCT and between GCT and MEP was measured using digital Vernier caliper accurate up to 0.01 mm. The percentage, mean, range and standard deviation was calculated for the data. Presence of GCT was noted in 207 bones (52.27%) (right-109 and left-98). In majority (80.7%) of the femora AT was larger than GCT. Mean distance between GCT and AT on right side was 10.8 ± 2.4 mm and on left side it was 10.9 ± 2.3.  Distance between GCT and MEP on right side was observed as 14.8 ± 0.5 mm and on left side 14.9 ± 2.9. The bilateral differences were not significant statistically. It is important for clinicians to identify GCT to avoid non-anatomical repair of medial knee injuries.


Sign in / Sign up

Export Citation Format

Share Document