66. Transcranial double-pulse stimulation of the contralateral primary somatosensory cortex can facilitate laser-evoked pain

2009 ◽  
Vol 120 (1) ◽  
pp. e30
Author(s):  
C. Ritter ◽  
M. Köhler ◽  
H.R. Siebner ◽  
T. Bartsch
NeuroImage ◽  
2010 ◽  
Vol 52 (4) ◽  
pp. 1477-1486 ◽  
Author(s):  
Mihai Popescu ◽  
Steven Barlow ◽  
Elena-Anda Popescu ◽  
Meredith E. Estep ◽  
Lalit Venkatesan ◽  
...  

1994 ◽  
Vol 72 (6) ◽  
pp. 2827-2839 ◽  
Author(s):  
P. J. Istvan ◽  
P. Zarzecki

1. Discharge patterns of neurons are regulated by synaptic inputs and by intrinsic membrane properties such as their complement of ionic conductances. Discharge patterns evoked by synaptic inputs are often used to identify the source and modality of sensory input. However, the interpretation of these discharge patterns may be complicated if different neurons respond to the same synaptic input with a variety of discharge patterns due to differences in intrinsic membrane properties. The purposes of this study were 1) to investigate intrinsic discharge patterns of neurons in primary somatosensory cortex of raccoon in vivo and 2) to use somatosensory postsynaptic potentials evoked by stimulation of forepaw digits to determine thalamocortical connectivity for the same neurons. 2. Conventional intracellular recordings with sharp electrodes were made from 121 neurons in the cortical representation of glabrous skin of digit four (d4). Intracellular injection of identical current pulses (100-120 ms in duration) elicited various patterns of discharge in different neurons. Neurons were classified on the basis of these intrinsic patterns of discharge, rates of spike adaptation, and characteristics of spike waveforms. Three main groups were identified: regular spiking (RS) neurons, intrinsic bursting (IB) neurons, and fast spiking (FS) neurons. Subclasses were identified for the RS and IB groups. 3. Neurons were tested for somatosensory inputs by stimulating electrically d3, d4, and d5. Excitatory postsynaptic potentials (EPSPs) were elicited in 100% of the neurons by electrical stimulation of d4, the "on-focus" digit. EPSPs were usually followed by inhibitory postsynaptic potentials (IPSPs). Many neurons (41%) responded with EPSP-IPSP sequences after stimulation of d3 or d5, the "off-focus" digits. 4. Latencies of somatosensory EPSPs and IPSPs were used to determine the synaptic order in the cortical circuitry of RS, IB, and FS neurons. EPSPs with monosynaptic thalamocortical latencies were recorded in RS, IB, and FS neurons. 5. We conclude that precise patterns of neural discharge in primary somatosensory cortex cannot be reliable estimates of sensory inputs reaching these neurons because patterns of discharge are so strongly influenced by intrinsic membrane properties. Ionic conductances governing patterns of neuronal discharge seem almost identical in intact cortex of raccoon, rat, and cat, and in slices of rodent cortex, because similar patterns of discharge are found. The consistency of patterns of discharge across species and types of preparation suggests that these intrinsic membrane properties are a general property of cerebral cortical neurons and should be considered when evaluation sensory coding by these neurons.


2003 ◽  
Vol 114 (10) ◽  
pp. 1866-1878 ◽  
Author(s):  
T Nihashi ◽  
R Kakigi ◽  
M Hoshiyama ◽  
K Miki ◽  
Y Kajita ◽  
...  

2017 ◽  
Vol 118 (1) ◽  
pp. 317-330 ◽  
Author(s):  
Cédric Lenoir ◽  
Gan Huang ◽  
Yves Vandermeeren ◽  
Samar Marie Hatem ◽  
André Mouraux

The role of the primary somatosensory cortex (S1) in vibrotaction is well established. In contrast, its involvement in nociception is still debated. Here we test whether S1 is similarly involved in the processing of nonnociceptive and nociceptive somatosensory input in humans by comparing the aftereffects of high-definition transcranial direct current stimulation (HD-tDCS) of S1 on the event-related potentials (ERPs) elicited by nonnociceptive and nociceptive somatosensory stimuli delivered to the ipsilateral and contralateral hands. Cathodal HD-tDCS significantly affected the responses to nonnociceptive somatosensory stimuli delivered to the contralateral hand: both early-latency ERPs from within S1 (N20 wave elicited by transcutaneous electrical stimulation of median nerve) and late-latency ERPs elicited outside S1 (N120 wave elicited by short-lasting mechanical vibrations delivered to index fingertip, thought to originate from bilateral operculo-insular and cingulate cortices). These results support the notion that S1 constitutes an obligatory relay for the cortical processing of nonnociceptive tactile input originating from the contralateral hemibody. Contrasting with this asymmetric effect of HD-tDCS on the responses to nonnociceptive somatosensory input, HD-tDCS over the sensorimotor cortex led to a bilateral and symmetric reduction of the magnitude of the N240 wave of nociceptive laser-evoked potentials elicited by stimulation of the hand dorsum. Taken together, our results demonstrate in humans a differential involvement of S1 in vibrotaction and nociception. NEW & NOTEWORTHY Whereas the role of the primary somatosensory cortex (S1) in vibrotaction is well established, its involvement in nociception remains strongly debated. By assessing, in healthy volunteers, the effect of high-definition transcranial direct current stimulation over S1, we demonstrate a differential involvement of S1 in vibrotaction and nociception.


Sign in / Sign up

Export Citation Format

Share Document