Repetitive Transcranial Magnetic Stimulation of the Primary Somatosensory Cortex Modulates Perception of the Tendon Vibration Illusion

2016 ◽  
Vol 123 (2) ◽  
pp. 424-444 ◽  
Author(s):  
D. C. Huh ◽  
J. M. Lee ◽  
S. M. Oh ◽  
J-H. Lee ◽  
P. Van Donkelaar ◽  
...  
2021 ◽  
Vol 11 (9) ◽  
pp. 1196
Author(s):  
Viola Oldrati ◽  
Alessandra Finisguerra ◽  
Alessio Avenanti ◽  
Salvatore Maria Aglioti ◽  
Cosimo Urgesi

Consistent evidence suggests that motor imagery involves the activation of several sensorimotor areas also involved during action execution, including the dorsal premotor cortex (dPMC) and the primary somatosensory cortex (S1). However, it is still unclear whether their involvement is specific for either kinesthetic or visual imagery or whether they contribute to motor activation for both modalities. Although sensorial experience during motor imagery is often multimodal, identifying the modality exerting greater facilitation of the motor system may allow optimizing the functional outcomes of rehabilitation interventions. In a sample of healthy adults, we combined 1 Hz repetitive transcranial magnetic stimulation (rTMS) to suppress neural activity of the dPMC, S1, and primary motor cortex (M1) with single-pulse TMS over M1 for measuring cortico-spinal excitability (CSE) during kinesthetic and visual motor imagery of finger movements as compared to static imagery conditions. We found that rTMS over both dPMC and S1, but not over M1, modulates the muscle-specific facilitation of CSE during kinesthetic but not during visual motor imagery. Furthermore, dPMC rTMS suppressed the facilitation of CSE, whereas S1 rTMS boosted it. The results highlight the differential pattern of cortico-cortical connectivity within the sensorimotor system during the mental simulation of the kinesthetic and visual consequences of actions.


Sign in / Sign up

Export Citation Format

Share Document