Effect of cued training on motor evoked potential and cortical silent period in people with Parkinson’s disease

2013 ◽  
Vol 124 (3) ◽  
pp. 545-550 ◽  
Author(s):  
Margaret Mak ◽  
Mark Hallett
Neurology ◽  
1997 ◽  
Vol 49 (5) ◽  
pp. 1278-1283 ◽  
Author(s):  
M. S. Young ◽  
W. J. Triggs ◽  
D. Bowers ◽  
M. Greer ◽  
W. A. Friedman

We compared the duration of the EMG cortical stimulation silent period(CSSP) elicited in abductor pollicis brevis using transcranial magnetic stimulation (TMS) before and after stereotactic unilateral globus pallidus internus pallidotomy (PAL) in 12 patients with Parkinson's disease. We used TMS stimulus intensities of 200, 150, 120, and 100% of motor evoked potential(MEP) threshold before and after (86 ± 25 days) PAL. PAL increased CSSP duration at stimulus intensities of 200% of MEP threshold in the hand contralateral to the stereotactic lesion. In a subset of five patients able to remain at rest during pre-PAL testing sessions, PAL decreased the resting MEP/M-wave area ratio in the hand contralateral to the lesion at a stimulus intensity of 120% of MEP threshold. PAL did not significantly modify the effects of TMS in the hand ipsilateral to the globus pallidus lesion. The results suggest that PAL improves the function of cortical motor inhibitory circuits in Parkinson's disease.


2013 ◽  
Vol 91 (2) ◽  
pp. 187-189 ◽  
Author(s):  
Alexis R. Mauger ◽  
James G. Hopker

Acetaminophen (ACT) facilitates the inhibition of voltage-gated calcium and sodium currents, which may effect cortico-spinal excitability. Twelve subjects ingested acetaminophen or a placebo and underwent transcranial magnetic stimulation to assess the motor evoked potential (MEP), and cortical silent period (CSP). ACT significantly increased MEP response (P > 0.05) but had no effect on CSP (P > 0.05). This indicates that ACT increases MEP and should be controlled for in studies where these measures are of interest.


1997 ◽  
Vol 150 ◽  
pp. S113
Author(s):  
A. Pardal ◽  
E. Gatto ◽  
R. Reisin ◽  
M. Fernandez Pardal

Author(s):  
Y. D. Van Der Werf ◽  
H. W. Berendse ◽  
E. J. W. van Someren ◽  
D. Stoffers ◽  
C. J. Stam ◽  
...  

2008 ◽  
Vol 8 (6) ◽  
pp. 517-523 ◽  
Author(s):  
Florian Roser ◽  
Florian H. Ebner ◽  
Marina Liebsch ◽  
Klaus Dietz ◽  
Marcos Tatagiba

Object The current neurophysiological assessment of syringomyelia is inadequate. Early-stage syringomyelia is anatomically predisposed to affect decussating spinothalamic fibers that convey pain and sensation primarily. Silent periods have been proven to be a sensitive tool for detecting alterations in this pathway. Methods Thirty-seven patients with syringomyelia were included in this prospective study. Routine electrophysiological measurements were applied including somatosensory evoked potential (SSEP) and motor evoked potential (MEP) recordings for all extremities. The silent periods were recorded from the pollicis brevis muscle, and electrical stimuli were applied to the ipsilateral digiti II. To establish baseline values, the authors had 28 healthy controls undergo monitoring. Sensitivity and specificity values were statistically evaluated according to the main clinical symptoms (paresis, dissociative syndrome, and pain). Results All control individuals had normal silent periods in voluntarily activated muscle. In syringomyelia patients, the affected limb showed pathological silent periods with all symptoms (sensitivity 30–50%). Pain was the most specific symptom (90%), despite SSEP and MEP values that were within the normal range. Conclusions Silent period testing is a sensitive neurophysiological technique and an invaluable tool for preoperative assessment of syringomyelia. Silent periods are associated with early dysfunction of thin myelinated spinothalamic tract fibers, even when routine electrophysiological measurements still reveal normal values. Conduction abnormalities that selectively abolish the silent periods can distinguish between hydromyelia (a physiologically dilated central canal) and space-occupying syringomyelia.


Sign in / Sign up

Export Citation Format

Share Document