Differences in nerve excitability properties across upper limb sensory and motor axons

Author(s):  
Antonia S. Carroll ◽  
James Howells ◽  
Cindy S.Y. Lin ◽  
Susanna B. Park ◽  
Neil Simon ◽  
...  
2007 ◽  
Vol 118 (5) ◽  
pp. e155
Author(s):  
S.V. Tan ◽  
P. Lee ◽  
R.J.L. Walters ◽  
A. Mehta ◽  
H. Bostock

2019 ◽  
Author(s):  
Kelvin E Jones ◽  
David J Bennett

AbstractBackgroundNerve excitability tests in sciatic motor axons are sensitive to anaesthetic choice. Results using ketamine/xylazine (KX) are different from those using sodium pentobarbital (SP). It is not clear which results are most similar to the awake condition, though results using SP appear more similar to human results.MethodsNerve excitability in tail motor axons was tested in 8 adult female rats with a chronic sacral spinal cord injury. These animals have no behavioural response to electrical stimulation of the tail and were tested awake and then anaesthetized using SP.ResultsThe nerve excitability test results in the awake condition were indistinguishable from the results when the same rats were anaesthetized with sodium pentobarbital. Summary plots of the test results overlap within the boundaries of the standard error and paired t-tests on the 42 discrete measures generated by nerve excitability testing yielded no significant differences (after Bonferroni correction for multiple comparisons).ConclusionsNerve excitability test results in rat motor axons are the same whether the animals are awake or anesthetized using sodium pentobarbital.


2019 ◽  
Vol 122 (4) ◽  
pp. 1728-1734
Author(s):  
James M. Bell ◽  
Chad Lorenz ◽  
Kelvin E. Jones

The objective was to determine biophysical differences between fast and slow motor axons using threshold tracking and demonstrate confounds related to anesthetic. Nerve excitability of motor axons innervating the slow-twitch soleus (SOL) and fast-twitch tibialis anterior (TA) muscles was tested. The experiments were conducted with pentobarbital sodium (SP) anesthetic and compared with previous results that used ketamine-xylazine (KX). Nerve excitability indices measured with SP show definitive differences between TA and SOL motor axons that extend beyond previous reports. Nerve excitability indices sensitive to changes in Ih indicated an increase in SOL axons compared with TA axons [e.g., S3 t = 7.949 (df = 10), P < 0.001; hyperpolarizing threshold electrotonus (90–100 ms), t = 2.659 (df = 20); P = 0.01; hyperpolarizing I/V slope, t = 4.308 (df = 19); P < 0.001]. SOL axons also had a longer strength-duration time constant [ t = 3.35 (df = 20); P = 0.003] and a longer and larger magnitude relative refractory period [RRP (ms) t = 3.53 (df = 12); P = 0.004; Refractoriness at 2 ms, t = 0.0055 (df = 9); P = 0.006]. Anesthetic choice affected many measures of peripheral nerve excitability with differences most apparent in tests of threshold electrotonus and recovery cycle. For example, recovery cycle with KX lacked a clear superexcitable and late subexcitable period. We conclude that KX had a confounding effect on nerve excitability results consistent with ischemic depolarization. Results using SP revealed the full extent of differences in nerve excitability measures between putative slow and fast motor axons of the rat. These results provide empirical evidence, beyond conduction velocity, that the biophysical properties of motor axons vary with the type of muscle fiber innervated. These differences suggest that fast axons may be predisposed to dysfunction during hyperpolarizing stresses, e.g., electrogenic sodium pumping following sustained impulse conduction. NEW & NOTEWORTHY Nerve excitability testing is a tool used to provide insight into the properties of ion channels in peripheral nerves. It is used clinically to assess pathophysiology of axons. Researchers customarily think of motor axons as homogeneous; however, we demonstrate there are clear differences between fast and slow axons in the rat. This is important for interpreting results with selective motor neuronopathy, like aging where fast axons are at high risk of degeneration.


2008 ◽  
Vol 119 (3) ◽  
pp. e26
Author(s):  
Stacey Jankelowitz ◽  
David Burke

2004 ◽  
Vol 29 (5) ◽  
pp. 645-655 ◽  
Author(s):  
Arun V. Krishnan ◽  
Cindy S.-Y. Lin ◽  
Matthew C. Kiernan

2019 ◽  
Author(s):  
James M. Bell ◽  
Chad Lorenz ◽  
Kelvin E. Jones

AbstractObjectiveThe objective was to determine if choice of anaesthetic confounded previous conclusions about the differences in nerve excitability indices between fast and slow motor axons.MethodologyNerve excitability of the rat sciatic nerve was tested while measuring responses of motor axons innervating the slow-twitch soleus (SOL) and fast-twitch tibialis anterior (TA) muscles. The experiments were conducted with sodium pentobarbital (SP) anaesthetic and compared to previous results that used ketamine-xylazine (KX).Results and ConclusionsPrevious conclusions about the differences in nerve excitability indices between TA and SOL motor axons using KX were corroborated and extended when experiments were done with SP. Nerve excitability indices sensitive to changes in hyperpolarization-activated inwardly rectifying cation current (Ih) indicated an increase in Ih in SOL axons compared to TA axons (e.g. S3 (−100 %), t=7.949 (df=10), p < 0.0001; TEh (90–100 ms), t=2.659 (df=20), p = 0.0145; hyperpolarizing I/V slope, t=4.308 (df=19), p = 0.0004). SOL axons also had a longer strength-duration time constant (t=3.35 (df=20), p = 0.0032) and a longer and larger magnitude relative refractory period (RRP (ms) t=3.53 (df=12), p = 0.0041; Refractoriness at 2 ms t=0.0055 (df=9), p = 0.0055).Anaesthetic choice affected many measures of peripheral nerve excitability with differences most apparent in tests of threshold electrotonus and recovery cycle. For example, recovery cycle with KX lacked a clear superexcitable and late subexcitable period. We conclude that KX had a confounding effect on nerve excitability results consistent with ischaemic depolarization. Results using SP revealed the full extent of differences in nerve excitability measures between putative slow and fast motor axons of the rat. These differences have important implications for the use of nerve excitability measures during processes such as ageing where it is believed that there is a selective loss of fast axons.New & NoteworthyNerve excitability testing is a tool used to provide insight into the properties of ion channels in peripheral nerves. It is used clinically to assess pathophysiology of motor axons. Researchers customarily think of motor axons as homogeneous; however, we demonstrate there are clear differences between fast and slow axons in the rat. This is important for interpreting results with selective motor neuronopathy, like aging where fast axons are at high risk of degeneration.


Author(s):  
R. Chen

ABSTRACT:Cutaneous reflexes in the upper limb were elicited by stimulating digital nerves and recorded by averaging rectified EMG from proximal and distal upper limb muscles during voluntary contraction. Distal muscles often showed a triphasic response: an inhibition with onset about 50 ms (Il) followed by a facilitation with onset about 60 ms (E2) followed by another inhibition with onset about 80 ms (12). Proximal muscles generally showed biphasic responses beginning with facilitation or inhibition with onset at about 40 ms. Normal ranges for the amplitude of these components were established from recordings on 22 arms of 11 healthy subjects. An attempt was made to determine the alterent fibers responsible for the various components by varying the stimulus intensity, by causing ischemic block of larger fibers and by estimating the afferent conduction velocities. The central pathways mediating these reflexes were examined by estimating central delays and by studying patients with focal lesions


Injury ◽  
1999 ◽  
Vol 30 ◽  
pp. S
Author(s):  
D RING
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document