On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials

2004 ◽  
Vol 193 (48-51) ◽  
pp. 5223-5256 ◽  
Author(s):  
F.M. Andrade Pires ◽  
E.A. de Souza Neto ◽  
D.R.J. Owen
2015 ◽  
Vol 19 (5) ◽  
pp. 563-570 ◽  
Author(s):  
Ridha Hambli ◽  
Sana Frikha ◽  
Hechmi Toumi ◽  
João Manuel R. S. Tavares

2016 ◽  
Vol 20 (3) ◽  
pp. 294-301 ◽  
Author(s):  
Qian Liu ◽  
Wanchun Wang ◽  
Andrew R. Thoreson ◽  
Chunfeng Zhao ◽  
Weihong Zhu ◽  
...  

1999 ◽  
Vol 122 (3) ◽  
pp. 476-483 ◽  
Author(s):  
A. M. Goijaerts ◽  
L. E. Govaert ◽  
F. P. T. Baaijens

This study is focused on the description of ductile fracture initiation, which is needed to predict product shapes in the blanking process. Two approaches are elaborated using a local ductile fracture model. According to literature, characterization of such a model should take place under loading conditions, comparable to the application. Therefore, the first approach incorporates the characterization of a ductile fracture model in a blanking experiment. The second approach is more favorable for industry. In this approach a tensile test is used to characterize the fracture model, instead of a complex and elaborate blanking experiment. Finite element simulations and blanking experiments are performed for five different clearances to validate both approaches. In conclusion it can be stated that for the investigated material, the first approach gives very good results within the experimental error. The second approach, the more favorable one for industry, yields results within 6 percent of the experiments over a wide, industrial range of clearances, when a newly proposed criterion is used. [S1087-1357(00)02202-4]


2007 ◽  
Vol 44 (5) ◽  
pp. 545-563 ◽  
Author(s):  
Tien H Wu ◽  
Steven Z Zhou ◽  
Stephan M Gale

The case history of an embankment built over soft water-treatment sludge is presented. To assure that the sludge would consolidate and gain strength as predicted, a test embankment was built. The observed performance of the test embankment was compared with the predicted performance to verify and modify design assumptions. The results were used to design and construct the full-scale embankment. The finite element method and the critical state model were used to predict the performances of the test embankment and the full-scale embankment. Bayesian updating and system identification were used to update the material properties used in the prediction for the test embankment. The updated properties were then used to update the prediction for the test embankment and to predict the performance of the full-scale embankment. These predictions were compared with the observed performances to evaluate the accuracies of the predictions with different input data. Efforts were made to identify factors that cause differences between predicted and measured performances.Key words: Bayesian updating, consolidation, finite-element prediction, shear strength, stability, water-treatment sludge.


1997 ◽  
Author(s):  
Yuzhao Song ◽  
Fu S. Chang ◽  
Paul Lipinski ◽  
Mike Paiva

Sign in / Sign up

Export Citation Format

Share Document