Data-driven reduced order model with temporal convolutional neural network

2020 ◽  
Vol 360 ◽  
pp. 112766 ◽  
Author(s):  
Pin Wu ◽  
Junwu Sun ◽  
Xuting Chang ◽  
Wenjie Zhang ◽  
Rossella Arcucci ◽  
...  
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Franck Nguyen ◽  
Selim M. Barhli ◽  
Daniel Pino Muñoz ◽  
David Ryckelynck

In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network (CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a dictionary of reduced order models. The output of the convolutional neural network being a model, an error estimator, is proposed to assess the accuracy of this output. This article details simple algorithmic choices that allowed a realistic mechanical modeling via computer vision.


2022 ◽  
Author(s):  
Marco Pizzoli ◽  
Francesco Saltari ◽  
Giuliano Coppotelli ◽  
Franco Mastroddi

2013 ◽  
Vol 50 (4) ◽  
pp. 1106-1116 ◽  
Author(s):  
Kyung Hyun Park ◽  
Sang Ook Jun ◽  
Sung Min Baek ◽  
Maeng Hyo Cho ◽  
Kwan Jung Yee ◽  
...  

2015 ◽  
Vol 625 ◽  
pp. 012009 ◽  
Author(s):  
G V Iungo ◽  
C Santoni-Ortiz ◽  
M Abkar ◽  
F Porté-Agel ◽  
M A Rotea ◽  
...  

2019 ◽  
Author(s):  
Sandeep B. Reddy ◽  
Allan Ross Magee ◽  
Rajeev K. Jaiman ◽  
J. Liu ◽  
W. Xu ◽  
...  

Abstract In this paper, we present a data-driven approach to construct a reduced-order model (ROM) for the unsteady flow field and fluid-structure interaction. This proposed approach relies on (i) a projection of the high-dimensional data from the Navier-Stokes equations to a low-dimensional subspace using the proper orthogonal decomposition (POD) and (ii) integration of the low-dimensional model with the recurrent neural networks. For the hybrid ROM formulation, we consider long short term memory networks with encoder-decoder architecture, which is a special variant of recurrent neural networks. The mathematical structure of recurrent neural networks embodies a non-linear state space form of the underlying dynamical behavior. This particular attribute of an RNN makes it suitable for non-linear unsteady flow problems. In the proposed hybrid RNN method, the spatial and temporal features of the unsteady flow system are captured separately. Time-invariant modes obtained by low-order projection embodies the spatial features of the flow field, while the temporal behavior of the corresponding modal coefficients is learned via recurrent neural networks. The effectiveness of the proposed method is first demonstrated on a canonical problem of flow past a cylinder at low Reynolds number. With regard to a practical marine/offshore engineering demonstration, we have applied and examined the reliability of the proposed data-driven framework for the predictions of vortex-induced vibrations of a flexible offshore riser at high Reynolds number.


2019 ◽  
Vol 874 ◽  
pp. 1096-1114 ◽  
Author(s):  
Ming Yu ◽  
Wei-Xi Huang ◽  
Chun-Xiao Xu

In this study, a data-driven method for the construction of a reduced-order model (ROM) for complex flows is proposed. The method uses the proper orthogonal decomposition (POD) modes as the orthogonal basis and the dynamic mode decomposition method to obtain linear equations for the temporal evolution coefficients of the modes. This method eliminates the need for the governing equations of the flows involved, and therefore saves the effort of deriving the projected equations and proving their consistency, convergence and stability, as required by the conventional Galerkin projection method, which has been successfully applied to incompressible flows but is hard to extend to compressible flows. Using a sparsity-promoting algorithm, the dimensionality of the ROM is further reduced to a minimum. The ROMs of the natural and bypass transitions of supersonic boundary layers at $Ma=2.25$ are constructed by the proposed data-driven method. The temporal evolution of the POD modes shows good agreement with that obtained by direct numerical simulations in both cases.


2020 ◽  
Vol 416 ◽  
pp. 109513 ◽  
Author(s):  
Saddam Hijazi ◽  
Giovanni Stabile ◽  
Andrea Mola ◽  
Gianluigi Rozza

Sign in / Sign up

Export Citation Format

Share Document