An edge-based smoothed finite element method for the assessment of human exposure to extremely low frequency electric fields

2020 ◽  
Vol 370 ◽  
pp. 113280
Author(s):  
Z.B. Guo ◽  
G. Wang
2021 ◽  
pp. 105678952110405
Author(s):  
Young Kwang Hwang ◽  
Suyeong Jin ◽  
Jung-Wuk Hong

In this study, an effective numerical framework for fracture simulations is proposed using the edge-based smoothed finite element method (ES-FEM) and isotropic damage model. The duality between the Delaunay triangulation and Voronoi tessellation is utilized for the mesh construction and the compatible use of the finite element solution with the Voronoi-cell lattice geometry. The mesh irregularity is introduced to avoid calculating the biased crack path by adding random variation in the nodal coordinates, and the ES-FEM elements are defined along the Delaunay edges. With the Voronoi tessellation, each nodal mass is calculated and the fractured surfaces are visualized along the Voronoi edges. The rotational degrees of freedom are implemented for each node by introducing the elemental formulation of the Voronoi-cell lattice model, and the accurate visualizations of the rotational motions in the Voronoi diagram are achieved. An isotropic damage model is newly incorporated into the ES-FEM formulation, and the equivalent elemental length is introduced with an additional geometric factor to simulate the consistent softening behaviors with reducing the mesh sensitivity. The full matrix form of the smoothed strain-displacement matrix is constructed for optimal use in the element-wise computations during explicit time integration, and parallel computing is implemented for the enhancement of the computational efficiency. The simulated results are compared with the theoretical solutions or experimental results, which demonstrates the effectiveness of the proposed methodology in the simulations of the quasi-brittle fractures.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Trung Thanh Tran ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi

The paper presents the extension of an edge-based smoothed finite element method using three-node triangular elements for dynamic analysis of the functionally graded porous (FGP) plates subjected to moving loads resting on the elastic foundation taking into mass (EFTIM). In this study, the edge-based smoothed technique is integrated with the mixed interpolation of the tensorial component technique for the three-node triangular element (MITC3) to give so-called ES-MITC3, which helps improve significantly the accuracy for the standard MITC3 element. The EFTIM model is formed by adding a mass parameter of foundation into the Winkler–Pasternak foundation model. Two parameters of the FGP materials, the power-law index (k) and the maximum porosity distributions (Ω), take forms of cosine functions. Some numerical results of the proposed method are compared with those of published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and materials on forced vibration of the FGP plates resting on the EFTIM are also studied in detail.


2019 ◽  
Vol 17 (02) ◽  
pp. 1845003 ◽  
Author(s):  
Yuki Onishi ◽  
Ryoya Iida ◽  
Kenji Amaya

A state-of-the-art tetrahedral smoothed finite element method, F-barES-FEM-T4, is demonstrated on viscoelastic large deformation problems. The stress relaxation of viscoelastic materials brings near incompressibility when the long-term Poisson’s ratio is close to 0.5. The conventional hybrid 4-node tetrahedral (T4) elements cannot avoid the shear locking and pressure checkerboarding issues, meanwhile F-barES-FEM-T4 can suppress these issues successfully by adopting the edge-based smoothed finite element method (ES-FEM) with the aid of the F-bar method and the cyclic smoothing procedure. A few examples of analyses verify that F-barES-FEM-T4 is locking-free and pressure oscillation-free in viscoelastic analyses as well as in nearly incompressible hyperelastic or elastoplastic analyses.


Sign in / Sign up

Export Citation Format

Share Document