scholarly journals Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method

Author(s):  
Trung Thanh Tran ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Trung Thanh Tran ◽  
Quoc-Hoa Pham ◽  
Trung Nguyen-Thoi

The paper presents the extension of an edge-based smoothed finite element method using three-node triangular elements for dynamic analysis of the functionally graded porous (FGP) plates subjected to moving loads resting on the elastic foundation taking into mass (EFTIM). In this study, the edge-based smoothed technique is integrated with the mixed interpolation of the tensorial component technique for the three-node triangular element (MITC3) to give so-called ES-MITC3, which helps improve significantly the accuracy for the standard MITC3 element. The EFTIM model is formed by adding a mass parameter of foundation into the Winkler–Pasternak foundation model. Two parameters of the FGP materials, the power-law index (k) and the maximum porosity distributions (Ω), take forms of cosine functions. Some numerical results of the proposed method are compared with those of published works to verify the accuracy and reliability. Furthermore, the effects of geometric parameters and materials on forced vibration of the FGP plates resting on the EFTIM are also studied in detail.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 684 ◽  
Author(s):  
Tien Dat Pham ◽  
Quoc Hoa Pham ◽  
Van Duc Phan ◽  
Hoang Nam Nguyen ◽  
Van Thom Do

An edge-based smoothed finite element method (ES-FEM) combined with the mixed interpolation of tensorial components technique for triangular shell element (MITC3), called ES-MITC3, for free vibration analysis of functionally graded shells is investigated in this work. In the formulation of the ES-MITC3, the stiffness matrices are obtained by using the strain-smoothing technique over the smoothing domains that are formed by two adjacent MITC3 triangular shell elements sharing an edge. The strain-smoothing technique can improve significantly the accuracy and convergence of the original MITC3. The material properties of functionally graded shells are assumed to vary through the thickness direction by a power–rule distribution of volume fractions of the constituents. The numerical examples demonstrated that the present ES-MITC3method is free of shear locking and achieves the high accuracy compared to the reference solutions in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Yan Cai ◽  
Guangwei Meng ◽  
Liming Zhou

To overcome the overstiffness and imprecise magnetoelectroelastic coupling effects of finite element method (FEM), we present an inhomogeneous cell-based smoothed FEM (ICS-FEM) of functionally graded magnetoelectroelastic (FGMEE) structures. Then the ICS-FEM formulations for free vibration calculation of FGMEE structures were deduced. In FGMEE structures, the true parameters at the Gaussian integration point were adopted directly to replace the homogenization in an element. The ICS-FEM provides a continuous system with a close-to-exact stiffness, which could be automatically and more easily generated for complicated domains, thus significantly decreasing the numerical error. To verify the accuracy and trustworthiness of ICS-FEM, we investigated several numerical examples and found that ICS-FEM simulated more accurately than the standard FEM. Also the effects of various equivalent stiffness matrices and the gradient function on the inherent frequency of FGMEE beams were studied.


2018 ◽  
Vol 30 (3) ◽  
pp. 416-437 ◽  
Author(s):  
Liming Zhou ◽  
Ming Li ◽  
Bingkun Chen ◽  
Feng Li ◽  
Xiaolin Li

In this article, an inhomogeneous cell-based smoothed finite element method (ICS-FEM) was proposed to overcome the over-stiffness of finite element method in calculating transient responses of functionally graded magneto-electro-elastic structures. The ICS-FEM equations were derived by introducing gradient smoothing technique into the standard finite element model; a close-to-exact system stiffness was also obtained. In addition, ICS-FEM could be carried out with user-defined sub-routines in the business software now available conveniently. In ICS-FEM, the parameters at Gaussian integration point were adopted directly in the creation of shape functions; the computation process is simplified, for the mapping procedure in standard finite element method is not required; this also gives permission to utilize poor quality elements and few mesh distortions during large deformation. Combining with the improved Newmark scheme, several numerical examples were used to prove the accuracy, convergence, and efficiency of ICS-FEM. Results showed that ICS-FEM could provide solutions with higher accuracy and reliability than finite element method in analyzing models with Rayleigh damping. Such method is also applied to complex structures such as typical micro-electro-mechanical system–based functionally graded magneto-electro-elastic energy harvester. Hence, ICS-FEM can be a powerful tool for transient problems of functionally graded magneto-electro-elastic models with damping which is of great value in designing intelligence structures.


Author(s):  
Tran Trung Thanh ◽  
Tran Van Ke ◽  
Pham Quoc Hoa ◽  
Tran The Van ◽  
Nguyen Thoi Trung

The paper aims to extend the ES-MITC3 element, which is an integration of the edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of tensorial components technique for the three-node triangular element (MITC3 element), for the buckling analysis of the FGM variable-thickness plates subjected to mechanical loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phenomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing the same edge. The numerical results demonstrated that the proposed method is reliable and more accurate than some other published solutions in the literature. The influences of some geometric parameters, material properties on the stability of FGM variable-thickness plates are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document