scholarly journals Pretreatment human immunodeficiency virus type 1 (HIV-1) drug resistance in transmission clusters of the Cologne-Bonn region, Germany

2019 ◽  
Vol 25 (2) ◽  
pp. 253.e1-253.e4 ◽  
Author(s):  
M. Stecher ◽  
A. Chaillon ◽  
A.M. Eis-Hübinger ◽  
C. Lehmann ◽  
G. Fätkenheuer ◽  
...  
2000 ◽  
Vol 74 (5) ◽  
pp. 2142-2150 ◽  
Author(s):  
Béatrice Labrosse ◽  
Carole Treboute ◽  
Marc Alizon

ABSTRACT The triterpene RPR103611 is an efficient inhibitor of membrane fusion mediated by the envelope proteins (Env, gp120-gp41) of CXCR4-dependent (X4) human immunodeficiency virus type 1 (HIV-1) strains, such as HIV-1LAI (LAI). Other X4 strains, such as HIV-1NDK (NDK), and CCR5-dependent (R5) HIV-1 strains, such as HIV-1ADA (ADA), were totally resistant to RPR103611. Analysis of chimeric LAI-NDK Env proteins identified a fragment of the NDK gp41 ectodomain determining drug resistance. A single difference at position 91, leucine in LAI and histidine in NDK, apparently accounted for their sensitivity or resistance to RPR103611. We had previously identified a mutation of isoleucine 84 to serine in a drug escape LAI variant. Both I84 and L91 are located in the “loop region” of gp41 separating the proximal and distal helix domains. Nonpolar residues in this region therefore appear to be important for the antiviral activity of RPR103611 and are possibly part of its target. However, another mechanism had to be envisaged to explain the drug resistance of ADA, since its gp41 loop region was almost identical to that of LAI. Fusion mediated by chimeric Env consisting of LAI gp120 and ADA gp41, or the reciprocal construct, was fully blocked by RPR103611. The gp120-gp41 complex of R5 strains is stable, relative to that of X4 strains, and this stability could play a role in their drug resistance. Indeed, when the postbinding steps of ADA infection were performed under mildly acidic conditions (pH 6.5 or 6.0), a treatment expected to favor dissociation of gp120, we achieved almost complete neutralization by RPR103611. The drug resistance of NDK was partially overcome by preincubating virus with soluble CD4, a gp120 ligand inducing conformational changes in the Env complex. The antiviral efficacy of RPR103611 therefore depends on the sequence of the gp41 loop and the stability of the gp120-gp41 complex, which could limit the accessibility of this target.


2007 ◽  
Vol 14 (10) ◽  
pp. 1266-1273 ◽  
Author(s):  
Golo Ahlenstiel ◽  
Kirsten Roomp ◽  
Martin Däumer ◽  
Jacob Nattermann ◽  
Martin Vogel ◽  
...  

ABSTRACT The objective of this study was a comprehensive analysis of the immune-driven evolution of viruses of human immunodeficiency virus type 1 (HIV-1) clade B in a large patient cohort treated at a single hospital in Germany and its implications for antiretroviral therapy. We examined the association of the HLA-A, HLA-B, and HLA-DRB1 alleles with the emergence of mutations in the complete protease gene and the first 330 codons of the reverse transcriptase (RT) gene of HIV-1, studying their distribution and persistence and their impact on antiviral drug therapy. The clinical data for 179 HIV-infected patients, the results of HLA genotyping, and virus sequences were analyzed using a variety of statistical approaches. We describe new HLA-associated mutations in both viral protease and RT, several of which are associated with HLA-DRB1. The mutations reported are remarkably persistent within our cohort, developing more slowly in a minority of patients. Interestingly, several HLA-associated mutations occur at the same positions as drug resistance mutations in patient viruses, where the viral sequence was acquired before exposure to these drugs. The influence of HLA on thymidine analogue mutation pathways was not observed. We were able to confirm immune-driven selection pressure by major histocompatibility complex (MHC) class I and II alleles through the identification of HLA-associated mutations. HLA-B alleles were involved in more associations (68%) than either HLA-A (23%) or HLA-DRB1 (9%). As several of the HLA-associated mutations lie at positions associated with drug resistance, our results indicate possible negative effects of HLA genotypes on the development of HIV-1 drug resistance.


2001 ◽  
Vol 75 (13) ◽  
pp. 5772-5777 ◽  
Author(s):  
Jan Balzarini ◽  
Maria-José Camarasa ◽  
Maria-Jesus Pérez-Pérez ◽  
Ana San-Félix ◽  
Sonsoles Velázquez ◽  
...  

ABSTRACT The RNA genome of the lentivirus human immunodeficiency virus type 1 (HIV-1) is significantly richer in adenine nucleotides than the statistically equal distribution of the four different nucleotides that is expected. This compositional bias may be due to the guanine-to-adenine (G→A) nucleotide hypermutation of the HIV genome, which has been explained by dCTP pool imbalances during reverse transcription. The adenine nucleotide bias together with the poor fidelity of HIV-1 reverse transcriptase markedly enhances the genetic variation of HIV and may be responsible for the rapid emergence of drug-resistant HIV-1 strains. We have now attempted to counteract the normal mutational pattern of HIV-1 in response to anti-HIV-1 drugs by altering the endogenous deoxynucleoside triphosphate pool ratios with antimetabolites in virus-infected cell cultures. We showed that administration of these antimetabolic compounds resulted in an altered drug resistance pattern due to the reversal of the predominant mutational flow of HIV (G→A) to an adenine-to-guanine (A→G) nucleotide pattern in the intact HIV-1-infected lymphocyte cultures. Forcing the virus to change its inherent nucleotide bias may lead to better control of viral drug resistance development.


Sign in / Sign up

Export Citation Format

Share Document