Statistical properties of several models of fractional random point processes

2011 ◽  
Vol 16 (8) ◽  
pp. 3224-3236 ◽  
Author(s):  
C. Bendjaballah
2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


1977 ◽  
Vol 65 (6) ◽  
pp. 990-990
Author(s):  
I. Rubin
Keyword(s):  

1968 ◽  
Vol 5 (03) ◽  
pp. 648-668
Author(s):  
D. G. Lampard

In this paper we discuss a counter system whose output is a stochastic point process such that the time intervals between pairs of successive events form a first order Markov chain. Such processes may be regarded as next, in order of complexity, in a hierarchy of stochastic point processes, to “renewal” processes, which latter have been studied extensively. The main virtue of the particular system which is studied here is that virtually all its important statistical properties can be obtained in closed form and that it is physically realizable as an electronic device. As such it forms the basis for a laboratory generator whose output may be used for experimental work involving processes of this kind. Such statistical properties as the one and two-dimensional probability densities for the time intervals are considered in both the stationary and nonstationary state and also discussed are corresponding properties of the successive numbers arising in the stores of the counter system. In particular it is shown that the degree of coupling between successive time intervals may be adjusted in practice without altering the one dimensional probability density for the interval lengths. It is pointed out that operation of the counter system may also be regarded as a problem in queueing theory involving one server alternately serving two queues. A generalization of the counter system, whose inputs are normally a pair of statistically independent Poisson processes, to the case where one of the inputs is a renewal process is considered and leads to some interesting functional equations.


2014 ◽  
Vol 70 (a1) ◽  
pp. C523-C523
Author(s):  
Michael Baake ◽  
Holger Koesters ◽  
Robert Moody

Getting a grasp of what aperiodic order really entails is going to require collecting and understanding many diverse examples. Aperiodic crystals are at the top of the largely unknown iceberg beneath. Here we present a recently studied form of random point process in the (complex) plane which arises as the sets of zeros of a specific class of analytic functions given by power series with randomly chosen coefficients: Gaussian analytic functions (GAF). These point sets differ from Poisson processes by having a sort of built in repulsion between points, though the resulting sets almost surely fail both conditions of the Delone property. Remarkably the point sets that arise as the zeros of GAFs determine a random point process which is, in distribution, invariant under rotation and translation. In addition, there is a logarithmic potential function for which the zeros are the attractors, and the resulting basins of attraction produce tilings of the plane by tiles which are, almost surely, all of the same area. We discuss GAFs along with their tilings and diffraction, and as well note briefly their relationship to determinantal point processes, which are also of physical interest.


Sign in / Sign up

Export Citation Format

Share Document