Fractional variational integrators for fractional Euler–Lagrange equations with holonomic constraints

2013 ◽  
Vol 18 (4) ◽  
pp. 905-914 ◽  
Author(s):  
Dongling Wang ◽  
Aiguo Xiao
2021 ◽  
Vol 2 (3) ◽  
pp. 431-441
Author(s):  
Odysseas Kosmas

In previous works we developed a methodology of deriving variational integrators to provide numerical solutions of systems having oscillatory behavior. These schemes use exponential functions to approximate the intermediate configurations and velocities, which are then placed into the discrete Lagrangian function characterizing the physical system. We afterwards proved that, higher order schemes can be obtained through the corresponding discrete Euler–Lagrange equations and the definition of a weighted sum of “continuous intermediate Lagrangians” each of them evaluated at an intermediate time node. In the present article, we extend these methods so as to include Lagrangians of split potential systems, namely, to address cases when the potential function can be decomposed into several components. Rather than using many intermediate points for the complete Lagrangian, in this work we introduce different numbers of intermediate points, resulting within the context of various reliable quadrature rules, for the various potentials. Finally, we assess the accuracy, convergence and computational time of the proposed technique by testing and comparing them with well known standards.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1358
Author(s):  
Shumin Man ◽  
Qiang Gao ◽  
Wanxie Zhong

Variational integrators for dynamic systems with holonomic constraints are proposed based on Hamilton’s principle. The variational principle is discretized by approximating the generalized coordinates and Lagrange multipliers by Lagrange polynomials, by approximating the integrals by quadrature rules. Meanwhile, constraint points are defined in order to discrete the holonomic constraints. The functional of the variational principle is divided into two parts, i.e., the action of the unconstrained term and the constrained term and the actions of the unconstrained term and the constrained term are integrated separately using different numerical quadrature rules. The influence of interpolation points, quadrature rule and constraint points on the accuracy of the algorithms is analyzed exhaustively. Properties of the proposed algorithms are investigated using examples. Numerical results show that the proposed algorithms have arbitrary high order, satisfy the holonomic constraints with high precision and provide good performance for long-time integration.


Author(s):  
Peter Mann

This chapter builds on the previous two chapters to tackle constrained systems, using Lagrangian mechanics and constrained variations. The first section deals with holonomic constraint equations using Lagrange multipliers; these can be used to reduce the number of coordinates until a linearly independent minimal set is obtained that describes a constraint surface within configuration space, so that Lagrange equations can be set up and solved. Motion is understood to be confined to a constraint submanifold. The variational formulation of non-holonomic constraints is then discussed to derive the vakonomic formulation. These erroneous equations are then compared to the central Lagrange equation, and the precise nature of the variations used in each formulation is investigated. The vakonomic equations are then presented in their Suslov form (Suslov–vakonomic form) in an attempt to reconcile the two approaches. In addition, the structure of biological membranes is framed as a constrained optimisation problem.


Author(s):  
P. Nasiri ◽  
Gary F. Dargush

Variational integrators have been used to study the transient response of a number of dynamical problems, while displaying superior conservation characteristics. The purpose of this paper is to develop variational integrators for linear piezoelectric problems. A two-field piezoelectric functional is first discretized in space and time and the coupled discrete Euler-Lagrange equations for displacement and electrical potential are then derived. Afterwards, to validate this new formulation, the numerical results for two initial/boundary value problems involving a piezoelectric plate are compared to the corresponding analytical solutions and finite element results obtained from a commercial software package. The excellent correlation of these solutions indicates the capability of variational integrators in modeling transient piezoelectric behavior. Finally, the superior energy conservation behavior of the developed method is demonstrated.


2020 ◽  
Vol 17 (1 Jan-Jun) ◽  
pp. 47
Author(s):  
Luis De la Peña ◽  
Ana María Cetto ◽  
Andrea Valdés-Hernández

The Lagrangian formulation of the equations of motion for point particles isusually presented in classical mechanics as the outcome of a series ofinsightful algebraic transformations or, in more advanced treatments, as theresult of applying a variational principle. In this paper we stress two mainreasons for considering the Lagrange equations as a fundamental descriptionof the dynamics of classical particles. Firstly, their structure can benaturally disclosed from the existence of integrals of motion, in a waythat, though elementary and easy to prove, seems to be less popular--or less frequently made explicit-- than others insupport of the Lagrange formulation. The second reason is that the Lagrangeequations preserve their form in \emph{any} coordinate system --even in moving ones, if required. Their covariant nature makes themparticularly suited to deal with dynamical problems in curved spaces orinvolving (holonomic) constraints. We develop the above and related ideas inclear and simple terms, keeping them throughout at the level of intermediatecourses in classical mechanics. This has the advantage of introducing sometools and concepts that are useful at this stage, while they may also serveas a bridge to more advanced courses.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 861
Author(s):  
Tomasz M. Tyranowski ◽  
Mathieu Desbrun

In this paper, we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the “Hamiltonian” equations of motion can be formulated as an index-1 differential-algebraic system. We also construct variational Runge–Kutta methods and analyze their properties. The general properties of Runge–Kutta methods depend on the “velocity” part of the Lagrangian. If the “velocity” part is also linear in the position coordinate, then we show that non-partitioned variational Runge–Kutta methods are equivalent to integration of the corresponding first-order Euler–Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge–Kutta method are retained. If the “velocity” part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We verified our results through numerical experiments for various dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document