lagrangian mechanics
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
pp. 449-459
Author(s):  
Andrew M. Steane

An introduction to Lagrangian methods for classical fields in flat spacetime and then in curved spacetime. The Euler-Lagrange equations for Lagrangian densities are obtained, and applied to the wave, Klein-Gordan, Weyl, Dirac, Maxwell and Proca equations. The canonical energy tensor is obtained. Conservation laws and Noether’s theorem are described. An example of the treatment of Interactions is given by presenting the the QED Lagrangian. Finally, covariant Lagrangian methods are described, and the Einstein field eqution is derived from the Einstein-Hilbert action.


Author(s):  
Armandt Erasmus

The aim of this paper is to obtain the equations of motion in n-dimensional space for the case where no external forces act on a mechanical system using analytical methods. One such method is known as Lagrangian Mechanics. Lagrangian Mechanics is founded on the principle of least action which states that the spontaneous change from one configuration to another of a dynamical system has a minimum action value if the law of conservation of energy holds.


2021 ◽  
Vol 14 (4) ◽  
pp. 301-308

Abstract: This manuscript aims at solving Hamilton-Jacobi equation in a central potential using the separation of variables technique with Staeckel boundary conditions. Our results show that the Hamilton – Jacobi variables can be completely separated, which agrees with other results employing different methods. Keywords: Lagrangian mechanics, Hamilton-Jacobi, Staeckel boundary conditions, Staeckel matrix, Staeckel vector, Hamilton's characteristic function, Hamilton's principal function.


2021 ◽  
pp. 404-416
Author(s):  
Geoffrey Brooker

“Quantization of waves: the stretched string” discusses waves in one dimension, in order to display the quantization procedure without the complication of three dimensions and of two polarization possibilities. Quantization goes via classical Lagrangian mechanics. The waves travel in both directions along the string, and we face up to disentangling these. The quantization procedure yields raising and lowering operators, their commutation rules, and their matrix elements.


Author(s):  
S Mohammad Mirtaheri ◽  
Hassan Zohoor

Based on Lagrangian mechanics, use of velocity constraints as a special set of quasi-velocities helps derive explicit equations of motion. The equations are applicable to holonomic and nonholonomic constrained multibody systems. It is proved that in proposed quasi-spaces, the Lagrange multipliers are eliminated from equations of motion; however, it is possible to compute these multipliers once the equations of motion have been solved. The novelty of this research is employing block matrix inversion to find the analytical relations between the parameters of quasi-velocities and equations of motion. In other words, this research identifies arbitrary submatrices and their effects on equations of motion. Also, the present study aimed to provide appropriate criteria to select arbitrary parameters to avoid singularity, reduce constraints violations, and improve computational efficiency. In order to illustrate the advantage of this approach, the simulation results of a 3-link snake-like robot with nonholonomic constraints and a four-bar mechanism with holonomic constraints are presented. The effectiveness of the proposed approach is demonstrated by comparing the constraints violation at the position and velocity levels, conservation of the total energy, and computational efficiency with those obtained via the traditional methods.


2021 ◽  
Vol 18 (2 Jul-Dec) ◽  
pp. 020201
Author(s):  
G. F. Torres del Castillo

We present some examples in the elementary Lagrangian formulation of classical mechanics where the introduction of a parameter in place of the time (sometimes called fictitious time or local time) decouples the equations of motion.


Sign in / Sign up

Export Citation Format

Share Document