The origin of natural gas and the hydrocarbon charging history of the Yulin gas field in the Ordos Basin, China

2010 ◽  
Vol 81 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Hu Guoyi ◽  
Li Jin ◽  
Shan Xiuqin ◽  
Han Zhongxi
2009 ◽  
Vol 35 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Quanyou Liu ◽  
Mengjin Chen ◽  
Wenhui Liu ◽  
Jian Li ◽  
Pinlong Han ◽  
...  

2009 ◽  
Vol 26 (6) ◽  
pp. 974-989 ◽  
Author(s):  
Liuping Zhang ◽  
Guoping Bai ◽  
Xiaorong Luo ◽  
Xinhua Ma ◽  
Mengjin Chen ◽  
...  

2017 ◽  
Vol 35 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Xiaoqi Wu ◽  
Jianhui Zhu ◽  
Chunhua Ni ◽  
Kuang Li ◽  
Yanqing Wang ◽  
...  

The molecular composition, stable carbon and hydrogen isotopes, and light hydrocarbons of the Lower Paleozoic natural gas in the Daniudi gas field in the Ordos Basin were investigated to study the geochemical characteristics. The Lower Paleozoic gas in the Daniudi gas field displays methane contents of 87.41–93.34%, dryness coefficients (C1/C1–5) ranging from 0.886 to 0.978, δ13C1 and δ13C2 values ranging from −40.3 to −36.4‰, with an average of −38.3‰, and from −33.6 to −24.2‰, with an average of −28.4‰, respectively, and δD1 values ranging from −197 to −160‰. The alkane gas generally displays positive carbon and hydrogen isotopic series, and the C7 and C5–7 light hydrocarbons of the Lower Paleozoic gas are dominated by methylcyclohexane and iso-alkanes, respectively. The Lower Paleozoic gas in the Daniudi gas field is mixed from coal-derived and oil-associated gases, similar to that observed in the Jingbian gas field. The oil-associated gas in the Lower Paleozoic gas is secondary oil cracking gas and displays a lower cracking extent than that in the Jingbian gas field. The coal-derived gas in the Lower Paleozoic gas in the Daniudi gas field migrated from the Upper Paleozoic gas through the window area where the iron–aluminum mudstone caprocks in the Upper Carboniferous Benxi Formation were missing. The oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field was probably derived from presalt source rocks in the Lower Ordovician Majiagou Formation rather than the limestone in the Upper Carboniferous Taiyuan Formation. It seems unlikely that the marlstone in the Upper Ordovician Beiguoshan Formation and shale in the Middle Ordovician Pingliang Formation on the western and southwestern margins of the Ordos Basin contributed to the oil-associated gas in the Lower Paleozoic gas in the Daniudi gas field.


2017 ◽  
Vol 46 ◽  
pp. 515-525 ◽  
Author(s):  
Ke Wang ◽  
Xiongqi Pang ◽  
Zhengfu Zhao ◽  
Shan Wang ◽  
Tao Hu ◽  
...  

2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


Sign in / Sign up

Export Citation Format

Share Document