Energy Exploration & Exploitation
Latest Publications


TOTAL DOCUMENTS

2037
(FIVE YEARS 337)

H-INDEX

29
(FIVE YEARS 7)

Published By Sage Publications

0144-5987

2022 ◽  
pp. 014459872110695
Author(s):  
Dingsheng Cheng ◽  
Lirong Dou ◽  
Qingyao Chen ◽  
Wenqiang Wang

The Bongor Basin is a typical lacustrine passive-rifted basin situated in the West and Central African Rift System (WCARS). It has experienced two phases of tectonic inversion and features a complex process of petroleum generation and accumulation. A total of 41 crude oil samples from the basin were geochemically analyzed to investigate their compositions of molecular markers. The results show that the oils have similar origins and are likely to belong to the same oil population. However, there are significant differences in geochemical characteristics and physical properties, caused by the secondary alteration. The relative contents and distribution patterns of normal alkanes and acyclic isoprenoids indicate that some of the oils have suffered biodegradation to varying degrees. The samples can be divided into three categories according to their relative degrees of degradation: normal oil, slightly biodegraded oil (PM 1–3), and severely biodegraded oil (PM 5–7). The burial depth of oil reservoirs in this area is the predominant factor impacting on the level of biodegradation. Crude oils in reservoirs with burial depths of less than 800 m are all severely biodegraded, while oils in reservoirs with burial depths greater than 1300 m have experienced no evident biodegradation. In reservoirs with burial depths between 800 m and 1300 m, the biodegradation degrees vary from normal to severely biodegraded. Oil reservoirs with burial depths less than 1300 m and adjacent to major faults are readily subject to biodegradation, while reservoirs with similar burial depths, but a certain distance away from major faults, have suffered no evident biodegradation. Moreover, if primary reservoirs have been modified by tectonic activity after accumulation, the crude oils are more likely to be biodegraded. Faulted anticline traps may create more favorable geological conditions for preservation of crude oil than reverse extrusion anticline reservoirs. This study may provide practical guidance for the assessment and prediction of oil quality in future oil exploration.


2022 ◽  
pp. 014459872110731
Author(s):  
Jun Liu ◽  
Yanzhao Wei ◽  
Wei Wang ◽  
Luwei Zhang ◽  
Jinqi Wu

To investigate the characteristics of gas pressure changes during the freezing of gas-containing composite coal, an experimental device for determining the freezing response characteristics of gas-containing coal was independently designed. Coal samples with different firmness coefficients from the No. 3 coal seam in Yuxi Coal Mine in Jincheng, Shanxi Province, were selected to determine the different freezing response characteristics. The gas pressure evolved under different temperatures (-10 °C-15 °C-20 °C-25 °C-30 °C) and different adsorption equilibrium pressures (1.0 MPa, 1.5 MPa, 2.0 MPa). The research results reveal that, during the freezing process of the gas-containing coal sample, the gas pressure in the coal sample tank changed as a monotonously decreasing function and underwent three stages: rapid decline, decline, and slow decline. The relationship between the gas pressure of the coal sample tank and the freezing time is described by a power function. Low temperatures promoted gas adsorption. As the freezing temperature decreased, the decrease of gas pressure in the coal sample tank became faster. During the freezing process, the adsorption capacity of soft coal was larger, and the gas pressure of soft coal was lower.


2022 ◽  
pp. 014459872110695
Author(s):  
Chunhua Zhang ◽  
Jiahui Shen ◽  
Mei Wan

The effective thermal conductivity (ETC) model of loose residual coal in goaf is a method to study the heat transfer law of spontaneous combustion in goaf. In order to study the effect of coal particle size and ambient temperature on heat transfer, coal samples of different sizes were taken from the FuSheng (FS) mine, and the void fraction, the thermal conductivity (TC) of the residual coal under different ambient temperature were tested. Additionally, four types of ETC models of loose residual coal in goaf were obtained and the average relative errors of the TC were analyzed. The results showed that the void fraction, the coal particle size and ambient temperature have different effects on the spontaneous combustion of the residual coal. The effect of coal sample size on the heat transfer is 100 times that of the ambient temperature. The changes in the ETC and average relative error of the different models were consistent. The heat transfer in the spontaneous combustion of residual coal has a direct relationship with the spatial distribution and heat transfer modes of the loose residual coal in the goaf.


2021 ◽  
pp. 014459872110681
Author(s):  
Tamer Khatib ◽  
Ameera Gharaba ◽  
Zain Haj Hamad ◽  
Aladdin Masri

This paper presents deep learning neural network models for photovoltaic output current prediction. The proposed models are long short-term memory and gated recurrent unit neural networks. The proposed models can predict photovoltaic output current for each second for a week time by using global solar radiation and ambient temperature values as inputs. These models can predict the output current of the photovoltaic system for the upcoming seven days after being trained by half-day data only. Python environment is used to develop the proposed models, and experimental data of a 1.4 kWp PV system are used to train, validate and test the proposed models. Highly uncertain data with steps in seconds are used in this research. Results show that the proposed models can accurately predict photovoltaic output current whereas the average values of the root mean square error of the predicted values by the proposed LSTM and GRU are 0.28 A and 0.27 A (the maximum current of the system is 7.91 A). In addition, results show that GRU is slightly more accurate than LSTM for this purpose and utilises less processor capacity. Finally, a comparison with other similar methods is conducted so as to show the significance of the proposed models.


2021 ◽  
pp. 014459872110663
Author(s):  
Dong Xiao ◽  
Jiaxin Xu ◽  
Tianduoyi Wang ◽  
Chun Cai ◽  
Li Li ◽  
...  

Closed-loop U-shaped geothermal wells show great potential owing to their special well-depth structure, which can provide a good flow rate and heat extraction. However, no advanced process parameter optimization method is available for U-shaped geothermal wells. To effectively describe the heat transfer processes of U-shaped geothermal wells, an analytical solution that couples transient heat conduction in the surrounding soil (or rocks) with the quasisteady heat transfer process in boreholes was developed. This modelling approach depends on many common elements, such as the thermophysical properties of the working fluid and series of resistances for various elements in the wellbore. Subsequently, based on the exergy analysis method, the optimal operating flow rate was defined and a design method for the optimal flow rate was developed. Results indicate that to obtain the maximum exergy efficiency, different optimal flow rates for the U-shaped geothermal well are achieved at different stages of the heating period. This findings of this study expand the research ideas of the process parameter optimization of U-shaped geothermal wells and provide a theoretical basis for developing an optimal circulating-flow-rate design for U-shaped geothermal wells.


2021 ◽  
pp. 014459872110635
Author(s):  
Wei Zhao ◽  
Wei Qin

Coal mining results in strata movement and surrounding rock failure. Eventually, manual mining space will be occupied by the destructed coal rock, making it difficult to conduct field tests of the coal seam to explore gas seepage and transport patterns. Therefore, computational fluid dynamics (CFD) numerical computation is an important tool for such studies. From the aspect of gas pre-drainage, for layer-through boreholes in the floor roadway of the 8,406 working face in Yangquan Mine 5 in China, reasonable layout parameters were obtained by CFD optimization. For effectively controlling the scope of boreholes along coal seam 9 in the Kaiyuan Mine, CFD computation was performed. The results revealed that the horizontal spacing between boreholes should be ≤2 m when a tri-quincuncial borehole layout is used. Optimization of the surface well position layout for the fault structure zone in the Xinjing Mine of the Yangquan mining area indicated that the horizontal distance between the surface well and the fault plane should be <150 m. From the aspect of gas drainage with mining-induced pressure relief, CFD computation was performed for pressure-relieved gas transport in the K8205 working face of Yangquan Mine 3. The results showed that forced roof caving should be used before the overhang length of hard roof reaches 25 m in the K8205 working face to avoid gas overrun. From the aspect of gas drainage from the abandoned gob, surface well control scopes at different surface well positions were computed, and an O-ring fissure zone is proposed as a reasonable scope for the surface well layout. CFD computation has been widely applied to coal and gas co-extraction in the Yangquan mining area and has played a significant role in guiding related gas drainage engineering practice.


2021 ◽  
pp. 014459872110520
Author(s):  
Yabin Gao ◽  
Xin Xiang ◽  
Ziwen Li ◽  
Xiaoya Guo ◽  
Peizhuang Han

Hydraulic slotting has become one of the most common technologies adopted to increase permeability in low permeability in coal field seams. There are many factors affecting the rock breaking effects of water jets, among which the impact force cannot be ignored. To study the influencing effects of contact surface shapes on jet flow patterns and impact force, this study carried out experiments involving water jet impingement planes and boreholes under different pressure conditions. The investigations included numerical simulations under solid boundary based on gas–liquid coupling models and indoor experiments under high-speed camera observations. The results indicated that when the water jets impinged on different contact surfaces, obvious reflection flow occurred, and the axial velocity had changed through three stages during the development process. Moreover, the shapes of the contact surfaces, along with the outlet pressure, were found to have impacts on the angles and velocities of the reflected flow. The relevant empirical formulas were summarized according to this study's simulation results. In addition, the flow patterns and shapes of the contact surfaces were observed to have influencing effects on the impact force. An impact force model was established in this study based on the empirical formula, and the model was verified using both the simulation and experimental results. It was confirmed that the proposed model could provide important references for the optimization of the technical parameters water jet systems, which could provide theoretical support for the further intelligent and efficient transformation of coal mine drilling water jet technology.


2021 ◽  
pp. 014459872110583
Author(s):  
Said Mirza Tercan ◽  
Onur Elma ◽  
Erdin Gokalp ◽  
Umit Cali

The recent advances in the modern power grids, such as growing energy demand and penetration of higher amounts of distributed energy generators like renewable energy resources, caused additional grid integration challenges for the distributed energy system operators. Besides, deep electrification impacts triggered by a growing share of electric vehicles as additional electric loads made it essential for the distributed energy system operators to re-investigate their upgrade plans in terms of distributed energy system lines and corresponding infrastructure investments. An energy storage system offers the opportunity to use energy flexibly, resulting in deferring the inevitable upgrade costs of the distribution grid elements and increasing the power quality. In this study, a new method is proposed to extend the lifespan of distributed energy systems with an energy storage system and reduce line upgrade costs. The proposed method is tested on the IEEE-33 with different case studies. The findings of this study indicated that the investigated energy storage option has a positive impact on the distributed energy system components and assets in terms of extending their lifespan and helping to mitigate growing demand peaks because of the load increase. According to the results, the proposed method reduces the total cost by up to 66%. Furthermore, the power losses are reduced by an average of 34.8%, and the voltage profiles are improved with the energy storage system.


2021 ◽  
pp. 014459872110558
Author(s):  
Jinming Mo ◽  
Wei Ma

Dust removal by ventilation is a commonly used dust control strategy. This study analyses the characteristics of airflow transport and dust pollution on a fully mechanised top-coal caving face at different inlet wind velocities by using a numerical simulation experiment, and the best wind velocity for dust suppression is obtained. When the inlet wind velocity fluctuates in the range of 0.5 to 3.0 m/s, the overall dust mass concentration on the working face initially increases and then remains stable, but in the range of 2.5 to 3.0 m/s, the changes in the overall dust mass concentration and dust mass concentration of the respiratory zone on the working face are not significant. The dust pollution in the respiratory zone produced by the hydraulic support lowering pillar and moving frame on the working face is quantitatively analysed at different inlet wind velocities of 2.5 to 3.0 m/s to determine the optimum wind velocity for dust suppression on the working face. The optimum wind speed for dust suppression is 2.6 m/s. This study lays a foundation for the ventilation design and dust control in the early stage of a mine and for the establishment of a clean and green production mine.


Sign in / Sign up

Export Citation Format

Share Document