gas source
Recently Published Documents


TOTAL DOCUMENTS

1628
(FIVE YEARS 127)

H-INDEX

55
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 420
Author(s):  
Ming Yan ◽  
Philip Hartjen ◽  
Martin Gosau ◽  
Tobias Vollkommer ◽  
Audrey Laure Céline Grust ◽  
...  

Cold plasma treatment increases the hydrophilicity of the surfaces of implants and may enhance their integration with the surrounding tissues. The implaPrep prototype device from Relyon Plasma generates cold atmospheric plasma via dielectric barrier discharge (DBD). In this study, titanium surfaces were treated with the implaPrep device for 20 s and assessed as a cell culture surface for fibroblasts. One day after seeding, significantly more cells were counted on the surfaces treated with cold plasma than on the untreated control titanium surface. Additionally, the viability assay revealed significantly higher viability on the treated surfaces. Morphological observation of the cells showed certain differences between the treated and untreated titanium surfaces. While conventional plasma devices require compressed gas, such as oxygen or argon, the implaPrep device uses atmospheric air as the gas source. It is, therefore, compact in size and simple to handle, and may provide a safe and convenient tool for treating the surfaces of dental implants, which may further improve the implantation outcome.


Author(s):  
N. A. Skibitskaya ◽  
◽  
I. O. Burkhanova ◽  
M. N. Bolshakov ◽  
V. A. Kuzmin ◽  
...  

Evaluation of rock wettability is an important task, since this parameter determines the distribution of water and oil in the reservoirs and their relative and phase permeability. The reliability of evaluation the wettability of rock samples depends on the drilling-in conditions during core sampling and core sample preparation methods. The investigation of the surface properties of the core from the Orenburg oil and gas condensate field showed that using of polymer-colloidal drilling mud leads to hydrophilization of the samples' surface. To obtain information on the actual wettability values of rock samples taken from wells drilled with polymer-colloidal drilling mud a method for estimating the relative (predominant) wettability of rocks based on petrophysical and lithological studies data is proposed. The authors suggest that the extraction of oil and gas source rock samples leads to irreversible changes in surface properties that cannot be restored. Keywords: selective wettability; relative wettability; predominant wettability; polymer-colloidal drilling mud; residual gas saturation; trapped gas saturation; pore space structure; extraction.


2021 ◽  
Vol 35 (1) ◽  
pp. 15-22
Author(s):  
Dimitar Parlichev ◽  
Atanas Vasilev

In many publications, as well as in media statements, prominent foreign and Bulgarian seismologists admit that seismology still does not have reliable methods and technical means for the identification of earthquake precursors in marine conditions (short-term forecast). Several facts, circumstances, and considerations are presented, motivating the need to immediately start experimental research in this area. A Bulgarian patent of a device for capturing underwater gas sources is offered for transmitting characteristics of the underwater gas source to a receiving device on land, indicating an impending earthquake. A strategy for experimentation and application of the device through the implementation of a new European project, uniting the forces and capabilities of the South European countries, is being proposed.


2021 ◽  
pp. 25-30
Author(s):  
Евгений Евгеньевич Простов

В статье представлены результаты экспериментальных исследований истечения пропана в различных направлениях в закрытом помещении. Рассматривался случай, когда источник истечения находился в багажнике автомобиля - имитация нахождения автомобиля с газомоторным топливом на станции технического обслуживания. Целью эксперимента являлось изучение механизма пространственного распространения газа в закрытом помещении для валидации математических моделей, используемых в программном комплексе ANSYS Fluent при моделировании поступления пропана в закрытое помещение. This scientific work describes a test conducted in a multidisciplinary test box on the testing training ground of the Orenburg branch of the All-Russian Research Institute for Fire Protection of EMERCOM of Russia. For the experiment there was built a room to simulate a service station (or parking box) for two cars. The frame was made of wooden bars and a plastic film was used to isolate the internal volume. The experimental installation consisted of a gas source with an internal diameter of 5 mm, located in the center of the room, and a system for gas supply and registration of experimental data from six gas analyzers SGOES-2 with a measurement range of pre-explosive concentrations from 0 to 100% of the lower concentration limit of flame propagation (NKPR) or a volume fraction from 0 to 1.7% with absolute ± 5% NKPR (in the range from 0 to 50% NKPR) and relative ± 10% NKPR (in the range from 50 to 100% NKPR) errors. In the center of the experimental room there was placed a car with the gas source in the trunk. All openings to the interior were insulated with plastic film and mounting foam. Natural cracks were left between the trunk lid and the body. The gas source is located in the trunk of the car and is directed towards the wide part of the trunk at an angle of 30 degrees relative to the floor (simulating the location of the gas cylinder used in cars). The gas analyzers were located along the wall, where the outflow is directed along the perimeter of the trunk, and one gas analyzer was located directly in the trunk behind the gas analyzer to control gas contamination. Propane has been released into the trunk with a constant flow rate of 2.8 m/h for 5 minutes. There were 8 test starts of the gas supply system (the flow vertically down), and then there were carried out 3 experiments per 3 series of tests in each. The purpose of the test was to study the mechanism of spatial gas propagation in an confined space for validation of mathematical models used in the ANSYS Fluent software package when modeling the propane intake into the confined space


2021 ◽  
Vol 5 (1) ◽  
pp. 70
Author(s):  
Vagia Makri ◽  
George Panagopoulos ◽  
Konstantinos Nikolaou ◽  
Spyridon Bellas ◽  
Nikos Pasadakis

It is evident that the increased focus on energy transition, will increase the demand for gas as it is the transitional fuel to the net zero CO2 emission era. The West Katakolo field is the only oil and gas discovery in Western Greece, and it is operated by Energean. The three offshore West Katakolo wells have defined both the oil and the gas zones, while onshore exploration wells have penetrated biogenic gas-saturated Plio-Pleistocene sands. This study assesses the gas generation potential of the local Plio-Pleistocene and Triassic sources using thermal maturity modelling based on the available legacy data, with limitations being addressed by running several case-scenarios. In conclusion, this study supports the generation of thermogenic and biogenic gas from the Triassic and Plio-Pleistocene sources respectively, demonstrating the importance of maturity modelling in hydrocarbon exploration, applied on the Katakolo case; a potential gas source to facilitate the energy transition in Greece.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Mikhail Vladimirovich Glagolev

This work represents the materials of the report prepared at the suggestion of N. S. Panikov in 19851986, when the author was a third-year student at the Faculty of Soil Science, M.V. Lomonosov Moscow State University. The report contains definitions of direct and inverse problems. A classification of inverse problems and several examples of such problems encountered in soil science and biological kinetics are given. The question of the ill-posed inverse problems is touched, and the main methods of their solution are briefly listed. The problem of identifying a gas source in a soil column by the layer-by-layer balance method (based on measurements of the dynamics of the concentration field) is considered in detail. This task is shown as a computer program, and for others, useful links to programs published in the literature are given.


2021 ◽  
Vol 11 (24) ◽  
pp. 11638
Author(s):  
Bingbing Wang ◽  
Xiangjie Lu ◽  
Sha Tao ◽  
Yanzhao Ren ◽  
Wanlin Gao ◽  
...  

Carbon dioxide (CO2) enrichment in an agricultural environment has been shown to enhance the efficiency of crop photosynthesis, increasing crop yield and product quality. There is a problem of the excessive use of CO2 gas when the CO2 is enriched for crops, such as soybean and other field crops. Given the application of micro-nanobubbles (MNBs) in agricultural production, this research takes CO2 as the gas source to prepare the micro-nanobubble water by the dissolved gas release method, and the response surface methodology is used to optimize the preparation process. The results show that the optimum parameters, which are the gas–liquid ratio, generator running time, and inlet water temperature for the preparation of CO2 micro-nanobubble water, are 2.87%, 28.47 min, and 25.52 °C, respectively. The CO2 content in the MNB water prepared under the optimum parameters is 7.64 mg/L, and the pH is 4.08. Furthermore, the particle size of the bubbles is mostly 255.5 nm. With the extension of the storage time, some of the bubbles polymerize and spill out, but there is still a certain amount of nanoscale bubbles during a certain period. This research provides a new idea for using MNB technology to increase the content and lifespan of CO2 in water, which will slow the release and increase the utilization of CO2 when using CO2 enrichment in agriculture.


Author(s):  
Shipeng Huang ◽  
Jianzhong Li ◽  
Tongshan Wang ◽  
Qingchun Jiang ◽  
Hua Jiang ◽  
...  

Light hydrocarbons (LHs) are an important component of natural gas whose chemical and isotopic compositions play a vital role in identifying gas genetic type, thermal maturity, gas–gas correlation, gas–source correlation, migration direction and phase, and secondary alterations (such as evaporative fractionation, biodegradation, and thermochemical sulfate reduction) experienced by the gas pool. Through review of geochemical research into LHs over recent decades, and analysis of chemical and isotopic compositions of LHs of gases and condensates from more than 40 gas fields in China, we present an overview of the genetic mechanisms of LHs and the impacts of various factors on their geochemical compositions. The primary objectives of this review are to demonstrate the application of LH chemical and isotopic composition characteristics to gas geochemistry research and to assess the applicability and reliability of geochemical identification diagrams and parameters for determining gas genetic types, maturity, source, secondary alteration, and migration direction and phase. ▪ Three main genetic mechanisms are proposed for the formation of light hydrocarbons: thermal decomposition, catalytic decomposition of organic matter, and microbial action. ▪ Chemical and isotopic compositions of light hydrocarbons with different carbon numbers and/or structures can be used to identify the genetic types and maturity of natural gas. ▪ Content ratios and carbon isotopes of characteristic light hydrocarbons are good indicators for gas–gas and gas–source correlations. ▪ Secondary alterations (evaporative fractionation, biodegradation, thermochemical sulfate reduction) and migration of gas can be indicated by chemical and isotopic compositions of light hydrocarbons. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document