scholarly journals The warning stimulus as retrieval cue: The role of associative memory in temporal preparation

2021 ◽  
Vol 125 ◽  
pp. 101378
Author(s):  
Sander A. Los ◽  
Jurre Nieuwenstein ◽  
Anass Bouharab ◽  
David J. Stephens ◽  
Martijn Meeter ◽  
...  
Author(s):  
Wouter Kruijne ◽  
Riccardo M. Galli ◽  
Sander A. Los

AbstractThere is growing appreciation for the role of long-term memory in guiding temporal preparation in speeded reaction time tasks. In experiments with variable foreperiods between a warning stimulus (S1) and a target stimulus (S2), preparation is affected by foreperiod distributions experienced in the past, long after the distribution has changed. These effects from memory can shape preparation largely implicitly, outside of participants’ awareness. Recent studies have demonstrated the associative nature of memory-guided preparation. When distinct S1s predict different foreperiods, they can trigger differential preparation accordingly. Here, we propose that memory-guided preparation allows for another key feature of learning: the ability to generalize across acquired associations and apply them to novel situations. Participants completed a variable foreperiod task where S1 was a unique image of either a face or a scene on each trial. Images of either category were paired with different distributions with predominantly shorter versus predominantly longer foreperiods. Participants displayed differential preparation to never-before seen images of either category, without being aware of the predictive nature of these categories. They continued doing so in a subsequent Transfer phase, after they had been informed that these contingencies no longer held. A novel rolling regression analysis revealed at a fine timescale how category-guided preparation gradually developed throughout the task, and that explicit information about these contingencies only briefly disrupted memory-guided preparation. These results offer new insights into temporal preparation as the product of a largely implicit process governed by associative learning from past experiences.


2021 ◽  
Author(s):  
wouter kruijne ◽  
Riccardo Mattia Galli ◽  
Sander Los

[Manuscript submitted for review]There is growing appreciation for the role of long-term memory in guiding temporal preparation. In experiments with variable foreperiods between a warning stimulus (S1) and a target stimulus (S2), preparation is affected by foreperiod distributions experienced in the past, long after the distribution has changed. Such memory-guided preparation shapes preparation largely implicitly and outside of a participants’ control. Recent studies have demonstrated the associative nature of such memory-guided preparation. When distinct S1s predict different foreperiods, they can trigger dissociative preparation accordingly. Here, we demonstrate that memory-guided preparation allows for another key feature of learning: the ability to generalize across acquired associations and apply them to novel situations. Participants completed a foreperiod task where S1 was a unique image of either a face or a scene on each trial. Images of either category were paired with different distributions with predominantly shorter versus predominantly longer foreperiods. Participants displayed dissociative preparation to never-before seen images of either category, without being aware of the predictive nature of these categories. They continued doing so in a subsequent transfer phase, after they had been informed that these contingencies no longer held. A novel rolling regression analysis revealed at a fine timescale how category-guided preparation gradually developed throughout the task, and illustrated how instructions at the start of the transfer phase interacted with these influences from long-term memory. These results offer new insights into temporal preparation as the product of a largely implicit process governed by associative learning from past experiences.


2019 ◽  
Vol 72 (11) ◽  
pp. 2672-2679
Author(s):  
Emily M Crowe ◽  
Christopher Kent

Starting procedures in racing sports consist of a warning (e.g., “Set”) followed by a target (e.g., “Go”) signal. During this interval (the foreperiod), athletes engage in temporal preparation whereby they prepare to respond to the target as quickly as possible. Despite a long history, the cognitive mechanisms underlying this process are debated. Recently, it has been suggested that traces of previous temporal durations drive temporal preparation performance rather than the traditional explanation that performance is related to the currently perceived hazard function. Los and colleagues used visual stimuli for the warning and target signals. As racing sports typically rely upon auditory stimuli, we investigated the role of memory on temporal preparation in the auditory domain. Experiment 1 investigated long-term transfer effects. In an acquisition phase, two groups of participants were exposed to different foreperiod distributions. One week later, during a transfer phase, both groups received the same distribution of foreperiods. There was no evidence for transfer effects. Therefore, Experiment 2 examined short-term transfer effects in which acquisition and transfer phases were completed in the same testing session. There was some evidence for transfer effects, but this was limited, suggesting that there may be modality-specific memory differences.


2020 ◽  
Vol 171 ◽  
pp. 107204 ◽  
Author(s):  
Sheng-Yin Huan ◽  
Kun-Peng Liu ◽  
Xu Lei ◽  
Jing Yu

2018 ◽  
Vol 30 (3) ◽  
pp. 365-380 ◽  
Author(s):  
Maya L. Rosen ◽  
Margaret A. Sheridan ◽  
Kelly A. Sambrook ◽  
Matthew R. Peverill ◽  
Andrew N. Meltzoff ◽  
...  

Associative learning underlies the formation of new episodic memories. Associative memory improves across development, and this age-related improvement is supported by the development of the hippocampus and pFC. Recent work, however, additionally suggests a role for visual association cortex in the formation of associative memories. This study investigated the role of category-preferential visual processing regions in associative memory across development using a paired associate learning task in a sample of 56 youths (age 6–19 years). Participants were asked to bind an emotional face with an object while undergoing fMRI scanning. Outside the scanner, participants completed a memory test. We first investigated age-related changes in neural recruitment and found linear age-related increases in activation in lateral occipital cortex and fusiform gyrus, which are involved in visual processing of objects and faces, respectively. Furthermore, greater activation in these visual processing regions was associated with better subsequent memory for pairs over and above the effect of age and of hippocampal and pFC activation on performance. Recruitment of these visual processing regions mediated the association between age and memory performance, over and above the effects of hippocampal activation. Taken together, these findings extend the existing literature to suggest that greater recruitment of category-preferential visual processing regions during encoding of associative memories is a neural mechanism explaining improved memory across development.


Sign in / Sign up

Export Citation Format

Share Document